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 NanoString: For moDC experiments, RNA was hybridized to the nCounter Immunology Panel (SU2C) data set denoting the prognosis of genesets via hazard ratio (Abida et. al 2019). Stars inhibition of moDC in a MLR. (D) Dual antagonism with AB928 rescues the ability of moDC to immunosuppression and provide a mechanistic rationale for stimulation of anti-tumor immune
(Human V2) codeset and analyzed using nSolver 4.0 software. NSCLC cancer cell lines were indicate statistical significance (*=p<0.1, **=p<0.01). (C) A,.R (left) and AR (right) gene expression stimulate IFN-y secretion in a MLR. (E) Gene expression of IL-10 in primary human CD141* DCs responses with the dual adenosine receptor antagonist AB928, which is currently being studied
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