OVERVIEW

- Preclinical and clinical evidence suggests that HIF-2α inhibition is a promising approach for the treatment of solid tumor cells, particularly in vitro cell renal carcinoma (CC786).1

- Inhibitor design challenges:
 - Various by Compound (mutant profile 1
 - **Basal**
 - Various by Compound (mutant profile

HIF-2α BIOLOGY & REGULATION

- The solid tumor microenvironment (TME) can be highly hypoxic and cancer cells may induce a series of genetic and epigenetic changes to survive and metastasize.2

- The master transcriptional regulator of hypoxic-induced genes are the Hif-1α and Hif-2α proteins.3

- HIF consists of an oxygen-regulated alpha monomer, of which there are three isoforms (HIF-1α, HIF-2α, and HIF-3α).4

- Alpha monomers heterodimerize with a constitutively expressed beta monomer (HIF-1α/1β; HIF-2α/1α; HIF-3α/1α).5

- Disruption of HIF-2α/1α heterodimer formation is an effective means to inhibit HIF-2α-dependent gene transcription.6

INITIAL DESIGN, OPTIMIZATION AND CHARACTERIZATION OF ARUCUS HIF-2α INHIBITORS

Fundamentals of Targeting the HIF-2α/ARNT Complex

Small molecules have been designed to inhibit HIF-2α/ARNT heterodimerization by binding a small, internal cavity in the HIF-2α/ARNT-B domain. The hydrophobic cavity shown in blue (iso-surface below) is a fully accessible with a volume of 389 Å³ and is occupied by 8 water molecules in the apo form. It has been demonstrated that small molecules can enter the cavity and induce a large, conformational change in the HIF-2α-ARNT-B domain, which, in turn, results in HIF-2α/ARNT-B complex degradation.7

Basal

Basis for regulation of protein-protein interaction:8

- Small molecule binds to HIF-2α-ARNT cavity (calculated)

Inhibitor design challenges:9

- Small internal pocket limits ligand size
- Binding affinity may not correlate with functional activity
- HIF-2α can be highly expressed in processes undermining physiological properties (high functionality)

Extensive Characterization of Initial HIF-2α Initial Lead Series

- Compound 1
- Compound 2
- Compound 3

Table 1. Representative Initial lead examples for Arcus Series 1, Series 2, and Series 3 HIF-2α inhibitor compounds.

Optimization of Series 1 HIF-2α Inhibitors

Series 1 inhibitors were optimized to improve potency and pharmacodynamic properties via structure-based design and kinetic-based virtual screening. A selection of optimized advanced compounds are shown in Table 2 which potently inhibit HIF-2α function in numerous assays formats without appreciable off-target activity.

Table 2. Potency of series 1 inhibitors. 1HIF-2α reporter and SPA assays performed as described in Table 1. VEGF Secretion Assays: 786 human cancer cells were treated with inhibitors for 48 hours at 0-10 µM; VEGF released with vehicle was quantified by Cytoseq (Perkin Elmer).

Figure 2. Extensive Characterization of Initial HIF-2α Initial Lead Series.

Figure 3. Optimization of Series 1 HIF-2α Inhibitors.

Figure 4. Representative VEGF dose-responses curves of optimized Arcus cell lines with Compound 3 (µM).

Figure 5. Representative VEGF dose-responses curves of optimized Arcus cell lines with Compound 3 (µM).

Figure 6. Pharmacokinetic Characterization of Compound 3.

Figure 7. Pharmacokinetic Characterization of Compound 3.

Figure 8. Pharmacokinetic Characterization of Compound 3.

Figure 9. Pharmacokinetic Characterization of Compound 3.

Table 3. Summary of Hepatocyte viability following exposure to Compound 3.

Table 4. Pharmacokinetic properties for optimized Compound 3.

Table 5. Percentage of control (mean ± SEM).

Table 6. Summary of experiment FI parameters in nL and d.p. Rat were dosed 76.8 mg/kg IV in DMAC/DMSO/sodium phosphate (pH 7.35, 10% and 0.1% PO) in TEG/1% (65S). Dogs were dosed 0.03 mg/kg IV in SAVYSLIDE (11% and mg/kg) as a 1% DMSO.

SUMMARY

- Three distinct compound series are undergoing iterative SAR optimization to develop potent and selective HIF-1α inhibitors from each compound series with each show both HIF-1α binding and functional activity.

- Series 1 inhibitors have been optimized via structure-based design and kinetic-based virtual screening to yield compounds with a median 35 hours half-life and high potency (10 nM for 786 cells) that exhibit IC50 values of levels of HIF2α target genes (VEGF and PDGFA) in human tumor cells.

CITATIONS

