### **AACR Virtual Annual** Meeting 2021

# Discovery and characterization of AB521, a novel, potent, and selective hypoxia-inducible factor (HIF)-2 $\alpha$ inhibitor

Kenneth V Lawson, Kelsey E Sivick Gauthier, Artur K Mailyan, Jeremy T A Fournier, Joel W Beatty, Samuel L Drew, Jarek Kalisiak, Balint Gal, Guillaume Mata, Zhang Wang, Xuelei Yan, Lixia Jin, Elaine Ginn, Dana Piovesan, Jean Chan, Jennifer Au, Cesar A Meleza, Stephen W Young, Matthew J Walters, Manmohan Leleti, Jay P Powers

Abstract Number: 2560

### **OVERVIEW**

- Preclinical and clinical evidence suggests that HIF-2 $\alpha$  inhibition is a valid approach to destroy tumor cells, particularly in clear cell renal carcinoma (ccRCC) and tumors associated with mutant pVHL<sup>1,2</sup>.
- $\diamond$  Our group is developing novel specific small-molecule HIF-2 $\alpha$ inhibitors and investigating the impact of HIF-2 $\alpha$  modulation in tumor biology.
- ✤ Here we describe the application of a pharmacophore mapping and structure-based design approach to discover multiple novel series of HIF-2 $\alpha$  inhibitors which are characterized via a collection of in vitro assays. Highly optimized inhibitors exhibit low-nanomolar potency against HIF-2 $\alpha$  and a favorable pharmacokinetic profile.

## **HIF-2α BIOLOGY & REGULATION**

- The solid tumor microenvironment (TME) can be hypoxic and cancer cells require induction of genes associated with metabolism, proliferation, and angiogenesis to survive and metastasize<sup>3</sup>.
- The master transcriptional regulators of hypoxia-induced genes are the Hypoxia-Inducible Factor (HIF) proteins<sup>4</sup>
- ✤ HIF consists of an oxygen-regulated alpha monomer, of which there are three isoforms (HIF-1 $\alpha$ , HIF-2 $\alpha$ , and HIF-3 $\alpha$ )<sup>4</sup>.
- Alpha monomers heterodimerize with a constitutively-expressed beta monomer (HIF-1β/ARNT) using Per-ARNT-SIM (PAS) protein-protein interaction domains<sup>4</sup>.
- Disruption of HIF- $\alpha$ /HIF-1 $\beta$  heterodimer formation is an effective means to inhibition of HIF-2 $\alpha$ -dependent gene transcription<sup>4</sup>.



**Figure 1**. **Overview of HIF-2α regulation.** In normoxia (left), proline residues present in the oxygen-dependent degradation domain (ODDD) of HIF-2 $\alpha$  are hydroxylated by prolyl hydroxylases (PHDs), allowing for recognition by the von Hippel-Lindau (pVHL) E3-ubiquitin ligase complex and subsequent ubiquitination and proteasomal degradation. Upon exposure to low oxygen conditions (hypoxia, right) or in the case of vhl mutation or silencing (pseudohypoxia), HIF-2 $\alpha$  subunits accumulate and dimerize with HIF-1 $\beta$ /ARNT, resulting in transcription of various gene sets, some of which are pro-tumorigenic, downstream of hypoxiaresponse element (HRE) DNA binding sites. Adapted from Yu et al.5.

#### **INITIAL DESIGN, OPTIMIZATION, AND CHARACTERIZATION OF NOVEL HIF-2α INHIBITORS** Characterization of Optimized HIF-2α Inhibitors Fundamentals of Targeting the HIF-2 $\alpha$ /ARNT Complex Further optimization led to the discovery of AB521, a highly potent and selective HIF-2 $\alpha$ inhibitor. AB521 avidly Small molecules have been designed to inhibit HIF-2 $\alpha$ /ARNT heterodimerization by binding a small, internal cavity in the binds to the HIF-2 $\alpha$ PAS-B domain and potently inhibits HIF-2 $\alpha$ function as evidenced by biochemical and cell-HIF-2α PAS-B domain. This hydrophobic cavity (shown as blue slate surface below) is fully enclosed with a volume of 290Å<sup>3</sup> and is occupied by 8 water molecules in the apo form. It has been demonstrated that small molecules can enter based assays. Assay HIF-2α / ARNT PDB-4ZP4 (2.4 Å) HIF-2α 786-O Luc. IC<sub>50</sub> (r 786-O Reporter (control, nM) HIF-2 $\alpha$ SPA IC<sub>50</sub> (nM) VEGF Secretion IC<sub>50</sub> **Table 1.** Potency and selectivity of optimized inhibitors. HIF/control reporter and SPA assays performed as described in Table 1. VEGF Protein Secretion Assay - 786-O cells were treated with inhibitors for 48 hours at 37 °C 5% CO<sub>2</sub> (Media replaced iHIF-2α with fresh after 24 hr). VEGF in the cell supernatant was quantified by AlphaLISA (Perkin Elmer). ( $n \ge 2$ for all assays, unless noted otherwise) Figure 2. X-ray structure of HIF-2α/ARNT complex. Figure 4. Representative dose-response curves for VEGF secretion and HIF cellular reporter assays in 786-O cells. ARNT PAS-B Inhibitor design challenges: VEGF Secretion HIF-2 $\alpha$ 786-O Luc. 125-Inhibitor induced dissociation of Small internal pocket limits ligand size --- AB521 HIF-2α/ARNT complex] Binding affinity may not correlate with 🛨 Compound C ← Compound C functional activity High affinity ligands often possess undesirable physicochemical properties (high lipophilicity)

the cavity and induce a subtle conformation change of the HIF-2 $\alpha$ PAS-B domain, which, in turn. results destabilization of the HIF- $2\alpha$ /ARNT complex.<sup>6</sup>





HIF dimerization disrupted Gene transcription inactive

Initial leads, exemplified by Compound A, were identified via pharmacophore mapping and structure-based design. Taken together, X-ray co-crystallization and thermal shift assays demonstrated avid binding to the PAS-B domain of the HIF-2α/ARNT complex and conformational perturbation of key residues (Y278, Y281, M252, and H293; Figure 3B) within the ligand binding pocket. From this lead, inhibitors were further optimized to improve potency and pharmacokinetic properties via structure-based design and iterative interpretation of structure activity relationships.



to PAS-B domain hydrophobic cavity. B) Binding of Compound A (omitted for clarity) substantially alters the conformation of the HIF- $2\alpha$ /ARNT hydrophobic pocket, including key residues shown to disrupt HIF- $2\alpha$ /ARNT dimerization.<sup>9</sup> C) Thermal Shift Assay (TSA). Compounds were incubated with PAS-B prior to addition of dye and fluorescence measurement.  $\Delta T_m$  (Cmpd A) = 11.6 °C

Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545 (USA)

### Identification of Potent and Selective HIF-2 $\alpha$ Inhibitors







|    | Compound B  | Compound C      | AB521      | <b>MK-6482</b><br>(PT2977) <sup>7</sup> |
|----|-------------|-----------------|------------|-----------------------------------------|
| M) | 3.50 ± 0.91 | 3.56 ± 2.0      | 10.0 ± 3.7 | 15.9 ± 7.4                              |
|    | >10,000     | >10,000         | >10,000    | > 10,000                                |
|    | n.d.        | n.d.            | 19.1 (n=1) | 31.2 ± 9.7                              |
|    | 9.61 ± 3.4  | $12.3 \pm 0.14$ | 30.5 ± 3.7 | 66.7 ± 37                               |



AB521 Selectively Inhibits HIF-2 $\alpha$  Gene Transcription

**Figure 5.** AB521 inhibits HIF- $2\alpha$ -, but not HIF-1 $\alpha$ - mediated transcription of pro-tumorigenic gene sets. Hep3B hepatocellular carcinoma cells (wild-type for VHL and HIF-1a) were treated with 1 nM to 10 µM AB521 or MK-6482 and exposed to hypoxia  $(1\% O_2)$ for 16 h prior to RNA isolation. Gene expression levels of HIF-2 $\alpha$ target genes (EPO and PAI1) and HIF-1 $\alpha$  genes (PDK1 and PGK1) were determined by qPCR ( $2^{-\Delta Ct}$ method) relative to HPRT1. AB521 inhibited EPO and PAI1 product with  $IC_{50}$  values of 33 and 28 nM, respectively.

# PHARMACOKINETIC PROFILING

#### Pharmacokinetic Characterization of AB521

AB521 exhibited a favorable in vitro profile with low intrinsic clearance in dog and human hepatocytes (Table 3). Furthermore, AB521 exhibited negligible inhibition against a panel of CYP isoforms (Table 2) and no time-dependent CYP inhibition (not shown). AB521 is further characterized by moderate-to-low clearance in rat and dog (Table 3). AB521 is projected to a long half-life and low clearance in humans and is expected to be suitable for once-daily dosing.

|                              | CYP Isoform |      |      |     |     |
|------------------------------|-------------|------|------|-----|-----|
|                              | 2C8         | 2C9  | 2C19 | 2D6 | 3A4 |
| <b>IC<sub>50</sub> (μ</b> Μ) | >40         | 35.2 | 28.4 | >40 | >40 |

**Table 2.** Compound was evaluated in vitro for its potential to inhibit major human
 drug metabolizing enzymes of the cytochrome P450 family.

#### Pharmacokinetic Properties of AB521

|         | Hepatocytes                                               |                               | _                            | In vivo                        |                               |  |
|---------|-----------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|-------------------------------|--|
| Species | <b>CL<sub>int</sub></b><br>(μL/min/10 <sup>6</sup> cells) | <b>T<sub>1/2</sub></b><br>(h) | <b>CL</b><br>(L/h/kg)        | <b>Vss</b><br>(L/kg)           | <b>T<sub>1/2</sub></b><br>(h) |  |
| Mouse   | 2.7                                                       | 10.8                          | 1.22                         | 2.2                            | 1.4                           |  |
| Rat     | 2.8                                                       | 10.3                          | 0.91                         | 2.3                            | 2.2                           |  |
| Dog     | <0.7                                                      | >40                           | 0.05                         | 1.1                            | 16                            |  |
| Human   | <0.7                                                      | >40                           | 0.012 <sup>a</sup> projected | 0.86 <sup>a</sup><br>projected | 50 <sup>a</sup><br>projected  |  |

Table 3. Summary of experimental PK parameters in rat and dog. Rats were dosed 0.25 mg/kg IV in DMAC:Ethanol:Propylene Glycol:Saline (10:10:30:50). Dogs were dosed 0.33 mg/kg IV in DMA/PG/water (1:1:1). <sup>a</sup>Projected human PK parameters determined by allometry (mouse, rat, and dog). V<sub>ss</sub> determined by Øie-Tozer method.

- dimerization. (Figure 3).
- be a potent and selective inhibitor of HIF-2 $\alpha$  (**Table 1**).
- indicating our inhibitors are highly selective for HIF-2 $\alpha$  (Figure 5).
- pharmacokinetic profile in human suitable for once-daily dosing.

- 1) Jonasch et al. (2020) ASCO 2020, Abstract #5003
- 2) Srinivasan et al. (2020) ESMO, Abstract #LBA26. 3) Hockel & Vaupel (2001) JNCI 93, 266-276.
- 4) Li et al. (2019) J Med Chem.
- 5) Yu *et al.* (2019) Drug Disc Today 00, 1-9.



### **SUMMARY**

Novel leads, such as Compound A were demonstrated to avidly bind to the HIF-2 $\alpha$ /ARNT complex and impart sufficient conformational perturbation to result in function disruption of HIF-2 $\alpha$ /ARNT

Advanced prototype Compounds **B-C** and AB521 were discovered via structure-based design and interrogation of structure activity relationships. AB521 has been extensively characterized and found to

\* AB521 strongly inhibited HIF-2 $\alpha$  target gene expression in Hep3B cells. In contrast, HIF-1 $\alpha$  target gene expression was minimally altered

✤ AB521 exhibits a favorable pharmacokinetic profile characterized by low clearance in preclinical species and is projected to possess a

### CITATIONS

| )3. | 6) | Rogers <i>et. al.</i> (2013) J Med Chem 56, 1739–1747 |
|-----|----|-------------------------------------------------------|
| j.  | 7) | Data from Arcus test of molecule described in         |
|     |    | Wehn <i>et al.</i> (2018) J Med Chem 61, 9691-9721.   |
|     | 8) | Xu <i>et. al.</i> (2019) J Med Chem 62, 6876–6893     |
|     | 9) | Wu <i>et. al.</i> (2019) Nat Chem Bio 15, 367–376     |
|     |    |                                                       |