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Abstract 256

/ Introduction \

+» High levels of extracellular adenosine generated in the tumor microenvironment (TME) engage
A,. and A,, adenosine receptors on immune cells, resulting in immunosuppression (Figure 1).

¢ Expression of A,_.R and A,.R can vary by cell type with T cells predominantly expressing A,.R,
while myeloid cells express both A,_R and A, R, and some cancer cells primarily expressing A,,R.

% Etrumadenant (AB928) is a selective, small-molecule, dual A, ,R/A, R antagonist with minimal
penetration across the blood brain barrier. It was specifically designed to potently block the
immunosuppressive effects of adenosine in the TME. We have previously shown that
etrumadenant blocks the immunosuppressive effects of adenosine in immune cells and
enhances anti-tumor immune responses in mouse syngeneic tumors.

** Here we describe the contribution of these receptors to adenosine-mediated phenotypes in
immune and cancer cells and provide a mechanistic rationale for stimulation of anti-tumor
immune responses with the dual adenosine receptor antagonist etrumadenant.
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Figure 1. Diagram of adenosine production from ATP released into the TME. Hydrolysis of ATP by the ecto-enzymes CD39
and CD73 produces adenosine, which exerts immunosuppressive effects by binding to adenosine receptors expressed on
immune cells and promotes a suppressive tumor microenvironment through A,,R-mediated signaling on cancer cells.

Methods

+** Isolated immune cell experiments: CD8* T cells and dendritic cells (DC) were isolated from
healthy human blood by negative selection. DC were matured with LPS/IFN-y for 24 hours in the
presence of NECA (synthetic adenosine receptor agonist) +/- antagonists, then analyzed by RNA
sequencing and cytokine bead array.

s* PBMC CXCL5 production: PBMC were freshly isolated from healthy human blood and incubated
with anti-CD2/CD3/CD28 beads in the presence of adenosine receptor agonists and antagonists
for 24 hours. Supernatants were collected and analyzed for CXCL5 production by ELISA.

s TAM and MDSC experiments: TAM and MDSC were obtained from B16F10 or LLC tumors by
sequential magnetic bead isolation TAM (F4/80+), gMDSC (Ly6G+), mMDSC (GR-1+). Cells were
stimulated with NECA +/- antagonists for 24 hours and then RNA was extracted for NanoString
gene expression analysis.

L)

L)

* RNAseq data analysis: TruSeq Stranded Total RNA libraries from DC were sequenced at 50mil
150bp PE reads. Genes were quantified using STAR alignment and Salmon quantification against
Gencode 38. Differential expression analysis was performed adjusting for donor effects. Pathway
analysis was performed using wilcoxGST and the sparrow package “camera”, which accounts for
inter-gene correlations. Hallmark gene sets were downloaded from MSigDB, GNE Myeloid
signature was obtained from McDermott et al. (2018), and adenosine response was derived
experimentally using monocyte-derived dendritic cells analyzed by Nanostring.

Table 1: Potency and Selectivity of Adenosine Receptor Antagonists *

Potency (nM) Etr?eTridr::; e A,_R antagonist A A,_.R antagonistB
1.4 1.5 0.2

A,.R
AR 2.0 123 141

A Proprietary A, R-selective adenosine receptor antagonist
B Compound 35 from W02018178338 (iTeos Therapeutics)
* Potency data generated at Arcus Biosciences
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Results

Adenosine Signaling Drives Immunosuppression in T Cells Through
A,.R Which is Reversed by Etrumadenant
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Figure 2. (A) Adenosine receptor gene expression of sorted human immune cells from healthy donors. (B) Activation of
human primary CD4 and CD8 T cells with a-CD3 and subsequent phosphorylation of CD3C is inhibited by NECA and
recovered by etrumadenant. (C) IFN-y and IL-2 production from primary human CD8* T cells activated for 72h in the
presence of NECA (5 uM) and adenosine receptor antagonists (1 puM). These results demonstrate that 1 uM of the
adenosine receptor antagonists used in this experiment are capable of fully suppressing adenosine-mediated suppression
driven by 5 pM NECA. (D) Jurkat-TIGIT cells were co-cultured with CD155-expressing CHO cells in the presence of o-TIGIT
+/- NECA (5 uM) +/- etrumadenant (1 puM). Luciferase reporter activity was measured after 6 hours. *=p<0.05, **=p<0.01,
***=p<0.001, ****=P<0.0001

PBMC Express Low but Detectable Levels of A, R Which Contributes
to Adenosine Receptor-Mediated Signaling
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Figure 3. (A) Gene expression analysis by real-time PCR from freshly isolated human PBMC showing low but detectable
levels of A, R (ADORA2B). (B) Stimulation of PBMC with NECA (A,,R/A,,R agonist) results in greater CXCL5 production when
compared to stimulation with a selective A, R agonist (CGS-21680). (C) Compared to A, R-selective antagonism, dual
antagonism with etrumadenant results in a significantly enhanced suppression of CXCL5 production in NECA (10 uM)-
treated cells (D) Equivalent suppression was observed with etrumadenant and an A,_R selective antagonist when PBMC
were stimulated with CGS-21680 (A,,R agonist, 10 uM).
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Figure 4. (A) Differentially expressed genes driven by NECA (5 uM) and inhibited by etrumadenant (1 pM) or A,,R-specific
antagonist (1 uM) in primary DCs (left panel, 6 donors). Notably, there were no differentially expressed genes between
the NECA + etrumadenant and DMSO control groups (top right panel) demonstrating a complete suppression of
adenosine receptor signaling. In contrast, the A, .R antagonist was unable to completely rescue the gene expression
changes stimulated by NECA (bottom right panel) (B) Pathways altered by (i) NECA vs DMSO (p < 0.05), (ii) etrumadenant
vs NECA, or (iii) A, R-selective antagonist vs NECA. Etrumadenant shows an enhanced ability to prevent NECA-driven
changes relative to A, R inhibition, especially for immune related gene sets. (C) Real-time PCR for adenosine receptors
ADORA2A and ADORA2B expression in primary DCs. (D) IL-12p70 and (E) CXCL9 and CXCL10 suppression by NECA (5 uM)
was rescued by etrumadenant (1 uM) after 24 hours in culture. *= p<0.05, ****=p<0.0001.
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Figure 5. Mouse B16F10 or LLC tumors were dissociated and suppressive myeloid populations (TAM/MDSC) were isolated.
(A) Real-time PCR for adenosine receptor expression in TAM and MDSCs. (B) Differentially expressed genes in isolated
gMDSC and mMDSC from LLC tumors driven by NECA stimulation (5 uM) and inhibited by etrumadenant (1 uM) in the
presence of NECA.
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Figure 6. (A) Linear model estimates adjusted for tumor type identifying alterations in cancer driver genes that predict
CD73 expression show that KRAS mutations are major drivers of CD73, data from The Cancer Genome Atlas (TCGA). Gene
expression data from the CCLE shows that CD73 and ADORA2B expression are strongly correlated in KRAS mutant NSCLC
cell lines (right panel). (B) Left: Gene expression changes in NSCLC cell lines driven by NECA (5 uM) and inhibited by
etrumadenant (1 uM). Right: Pathways driven by adenosine signaling (NECA vs DMSO, camera FDR < 0.05) that are
inhibited by etrumadenant (etruma vs NECA). HM = Hallmark. (C) Real-time PCR for adenosine receptor expression from
NSCLC cell lines showing high A, R expression. (D) Comparison of dual vs A,_R selective antagonists (1 puM) in blocking
NECA-stimulated (5 uM) gene expression changes in NSCLC cell lines.

Etrumadenant in Combination with Doxorubicin Reduces 4T1
Syngeneic Tumor Growth and Lung Metastases
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Figure 7. (A) 4T1 cells universally express CD73 as measured by flow cytometry (top panel). Myeloid cells comprise a large
portion of the immune cell infiltrate in 4T1 tumors (bottom panel). (B) Tumor volume from 4T1 model. Dosing started at
50 mm?3, etrumadenant (100 mg/kg, PO, BID) and doxorubicin (6 mg/kg) dosing as indicated. Number of lung metastases
were quantified at the end of the study (right panel). ** = p<0.01, ***= p<0.001.

Conclusions

“ In T cells, myeloid cells, and A, R-expressing cancer cells, dual A, ,R/A, R antagonism with
etrumadenant prevents adenosine/NECA induced immunosuppression and gene expression
changes greater than A,_R-selective antagonism.

% These studies build upon the established rationale for targeting A,.R in T and NK cells,
demonstrate an important role for A, R in adenosine-mediated myeloid cell immuno-
suppression, and provide a mechanistic rationale for stimulation of anti-tumor immune
responses with the dual adenosine receptor antagonist etrumadenant.



