INHIBITING TIGIT TO PROMOTE ANTI-TUMOR IMMUNITY

DANA PIOVESAN, MSc
June 23rd, 2022
Disclosures and Forward-Looking Statements/Safe Harbor

This presentation contains forward-looking statements about Arcus Biosciences, Inc. (“we,” “Arcus” or the “Company”) made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical facts contained in this presentation are forward-looking statements, including statements about the advantages of our investigational products. These forward-looking statements are subject to a number of risks, uncertainties and assumptions that may cause actual results to differ materially from those contained in any forward-looking statements we may make, including, but not limited to: the inherent uncertainty associated with pharmaceutical product development and clinical trials, the applicability of the data and results described herein to our clinical development plans and clinical trials, and changes in the competitive landscape.

We operate in a very competitive and rapidly changing environment. New risks emerge from time to time. It is not possible for our management to predict all risks, nor can we assess the impact of all factors on our business or the extent to which any factor, or combination of factors, may cause actual results to differ materially and adversely from those anticipated or implied in the forward-looking statements. Further information on these and other factors that could affect the forward-looking statements made herein are described in reports we file from time to time with the Securities and Exchange Commission.

You should not rely upon forward-looking statements as predictions of future events. Except as required by law, neither we nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements. We undertake no obligation to update publicly and forward-looking statements for any reason after the date of this presentation to confirm these statements to actual results or to changes in our expectations.
Molecular Suppression of T Cells in the Tumor Microenvironment: T Cell Inhibitory Receptors (Checkpoints)

TIGIT/CD226 Pathway
TIGIT is an Inhibitory Receptor That Out-Competes CD226 Activating Receptor for CD155 Binding, Resulting in Immunosuppression
Similar to the PD-1/CD28 Interaction, PD-1 Has Also Been Shown to Restrict CD226 Signaling

Banta et al. (2022) Immunity, DOI: 10.1016/j.immuni.2022.02.005
CD226 Signaling Can be Enhanced Through Co-blockade of PD-1 and TIGIT

Increased activation / functionality
Domvanalimab (Fc-silent) and AB308 (Fc-enabled) are Potent Anti-TIGIT Antibodies Currently Being Evaluated in Cancer Patients

1Han et al. (2020) Frontiers in Immun. DOI: 10.3389/fimmu.2020.573405
2Waight et al. (2018) Cancer Cell. DOI: 10.1016/j.ccell.2018.05.005
3Chen et al. (2022) Frontiers in Immun. DOI: 10.3389/FIMMU.2022.828319/BIBTEX
In Mice, Combination of α-PD-1 with Either Fc-Silent (FcS) or Fc-Enabled (WT) α-TIGIT Enhances Tumor Control. α-TIGIT-WT Associated With Intratumoral T_{reg} Depletion.

MC38

- **Tumor Volume (mm³)**
 - Isotype
 - αPD-1
 - αTIGIT WT
 - αPD-1 + αTIGIT WT
 - αTIGIT FcS
 - αPD-1 + αTIGIT FcS

- **TIGIT expression levels**

Days After Implantation

WT = mlG2a
Fc-silent (FcS) = mlG2a with L234A/ L235A / P329G mutations in heavy chain
In Human, Fc-enabled AB308 and tiragolumab Induce FcyR-mediated Signaling and Promote NK-mediated ADCC Against TIGIT-Expressing Target Cells

FcyRllla V158 (high affinity)

- AB308
- tiragolumab
- domvanalimab

NK-mediated ADCC

- pCHO
- hTIGIT-CHO

- Isotype
- Anti-TIGIT

Target cell

- TIGIT expression on target cells

- CD16 (FcyRIII)

NK cell

- TIGIT

Tregs

- ****

- ns

CD8+ T cells

- tiragolumab
- AB308
- domvanalimab

* tiragolumab synthesized by Arcus based on INN publication
What is the Identity of TIGIT-expressing T cells Modulated by Treatment with Anti-TIGIT Antibodies?

Pre-dysfunctional/Stem-like CD8\(^+\) T cells activated by anti-PDx are also probable targets for anti-TIGIT

Increased pool of T cells capable of differentiating into cells with enhanced cytotoxic/effect potential

Figure informed by:
Budimir et al. (2022) Cancer Immunol Res, DOI: 10.1158/2326-6066
Connolly et al. (2021) Science Immunol, DOI: 10.1126/sciimmunol.abg7
Miller et al. (2019) Nat Immunol, DOI: 10.1038/s41590-019-0312-6
Stem-like (TCF-1+) and Terminally Differentiated (TIM-3+)
CD8+ T Cells are Present in NSCLC Tumors

Gated on CD8+ T cells

Stem-like

Terminally differentiated

% of CD8+ T cells

100
80
60
40
20
0
Stem-like
Terminally differentiated

% of CD8+ T cell subset

100
80
60
40
20
0

PD-1+
CD39+
GZMB+
GZMK+
CD103+

In NSCLC Tumors, PD-1, TIGIT, and CD226 are Expressed on a High Proportion of Both Stem-like and Terminally Differentiated CD8+ T Cells
PD-1+TIGIT+CD226+ Stem-like CD8+ T cells are Probable Targets for Co-blockade of PD-1 and TIGIT
Conclusions and Future Directions

• Fc-enabled AB308, but not Fc-silent domvanalimab, has the capacity to bind Fcγ receptors and promote NK-mediated ADCC

• PD-1, TIGIT, and CD226 are co-expressed on both stem-like and terminally differentiated intratumoral CD8⁺ T cell subsets in NSCLC subjects

• Akin to reported cellular targets of anti-PD-(L)1, PD-1, TIGIT, and CD226 co-expressing stem-like CD8⁺ T cells are probable targets for anti-TIGIT therapy

• Given that stem-like CD8⁺ T cells are essential for anti-tumor responses and that PD-1 and TIGIT can both suppress CD226 activity, further work is required to understand how co-blockade of PD-1 and TIGIT impacts PD-1⁺TIGIT⁺CD226⁺ stem-like CD8⁺ T cells

1Budimir et al. (2022) Cancer Immunol Res, DOI: 10.1158/2326-6066
2Banta et al. (2022) Immunity, DOI: 10.1016/j.immuni.2022.02.005
Arcus is Hiring!

• Biology
 - Scientist/Senior Scientist Myeloid Cell Biology, Hayward, California
 - Scientist – Immunology, Hayward, California
 - Research Associate/ Sr. Research Associate/ Associate Scientist – Discovery Biology, Hayward, California

• https://arcusbio.com/careers/#careers

Annual Research Retreat
Napa, CA
(Circa 2019)