Key Findings

- Population PK model-based simulations indicate that domvanalimab flat doses of 1200 mg Q3W and 1600 mg Q4W will result in similar exposure to 15 mg/kg Q3W and 20 mg/kg Q4W, respectively.

- Flat doses of 1200 mg Q3W and 1600 mg Q4W are being studied in ongoing Phases 2 and 3 clinical trials in multiple cancer indications.

Simulations indicate that flat doses of 1200 mg Q3W and 1600 mg Q4W result in similar exposure as 15 mg/kg Q3W and 20 mg/kg Q4W, respectively.

INTRODUCTION

Domvanalimab (AB154) is an Fc-silent humanised IgG1 mAb designed to block the interaction of T-cell immunoglobulin and ITM domain (TIGIT) with CD112 and CD155, reducing inhibition of T cells and NK cells and, thereby, promoting antitumour activity.

Domvanalimab, in combination with zimberelimab, an investigational anti-PD-1 mAb, is being developed in multiple oncology indications, including non-small cell lung cancer (NSCLC) and upper gastrointestinal tract cancers; clinically meaningful improvement in objective response rate & progression-free survival was demonstrated compared to zimberelimab monotherapy in NSCLC patients.

Domvanalimab was dosed based on body weight in early phase clinical studies; a model-informed drug development (MIDD) approach is used to provide justification for flat-dosing regimen, improving the ease of use and administration.

OBJECTIVES

- To develop a population pharmacokinetics (PK) model for domvanalimab
- To derive flat doses of domvanalimab using MIDD approach to employ in future clinical studies

METHODS: Clinical Studies with Domvanalimab PK Data

<table>
<thead>
<tr>
<th>Study</th>
<th>Population PK-PD Analysis</th>
<th>Study Design</th>
<th>Population</th>
<th>Number of subjectsa</th>
<th>Number of PK observations</th>
<th>O/W dosing regimen</th>
<th>Clinical Trial.gov identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB154C00001</td>
<td>phase 1 open-label, parallel group, dose-escalation study to evaluate the safety, pharmacology, PK, PD, and preliminary efficacy in patients with solid tumors</td>
<td>Patients with advanced solid tumors</td>
<td>40</td>
<td>42</td>
<td>0.5 mg/kg, 1 mg/kg, 2 mg/kg, 15 mg/kg, 20 mg/kg</td>
<td>Q3W</td>
<td>NCT03628677</td>
</tr>
<tr>
<td>AB154C00002</td>
<td>open-label, proof of concept study of domvanalimab monotherapy in combination with zimberelimab or domvanalimab+zimberelimab monotherapy</td>
<td>Metastatic G1a (squamous or non-squamous non-small cell lung cancer (NSCLC))</td>
<td>40</td>
<td>42</td>
<td>0.5 mg/kg, 1 mg/kg, 2 mg/kg, 15 mg/kg, 20 mg/kg</td>
<td>Q3W, Q4W</td>
<td>NCT04262856</td>
</tr>
</tbody>
</table>

*a: patients who have received at least one dose of non-maintenance phase; full data are available in the Table 1 analysis

RESULTS

- A two-compartment model with weight as covariate on clearance and central volume of distribution was selected as the final model
- Simulations indicated that the overall difference in geometric means of all summary exposure measures between the weight based and flat dose regimens was < 1% when comparing 1200 mg Q3W to 15 mg/kg Q3W, and 1600 mg Q4W to 20 mg/kg Q4W regimens.

METHODS: Population PK Model Structure

Parameter Estimates

- The population PK-PD analysis was conducted using nonlinear mixed-effects modeling with the NONMEM software, version 7.5.
- Graphical and all other statistical analyses, including evaluation of NONMEM outputs, were performed using R version 3.6.2 for Windows

REFERENCE

Ayyappa Chaturvedula1,2, Kai H. Liao3, Molly Zhao3, Balaji Agoram1

1. Arcus Biosciences, Hayward, California, USA
2. Pumas AI, Inc, Centreville, VA, USA
3. Gilead Sciences, Inc, Foster City, California, USA