

Inhibition of CD39 to Promote Anti-Tumor Immune Responses

Christine Bowman, PhD

Associate Director, Biology

October 13, 2023

CD39 Inhibition Through AB598 Will Result in a Heightened Anti-Tumor Immune Response

Therapeutic Hypothesis

Inhibition of CD39 enzymatic activity will increase local levels of ATP leading to an immunostimulatory TME

Translational Hypothesis

Inhibition of CD39 in combination with chemotherapy and/or radiation, agents that induce immunogenic cell death (ICD), will increase local levels of ATP, and enhance clinical response to immunotherapies

AB598 is a highly potent and specific IgG1 Fc-silent antibody targeting CD39

CD39 Inhibition Elevates Extracellular ATP to Activate the Immune System

CD39 Is Expressed Within the Immune and Stromal Compartments of the TME

CONFIDENTIAL © Arcus Biosciences 2023 EAC = Esophageal Adenocarcinoma; GEJ = Gastroesophageal Junction Adenocarcinoma; SCC = Lung Adenocarcinoma; SA = Stomach Adenocarcinoma; PDAC = Pancreatic Ductal Adenocarcinoma

CD39 Is Highly Expressed Predominantly on the Surface of **Myeloid Cells in Healthy Human Whole Blood**

CONFIDENTIAL © Arcus Biosciences 2023

CD39 Is Highly Expressed on Human Gastric Tumor-Infiltrating Immune Cells

CONFIDENTIAL © Arcus Biosciences 2023

6

Isotype control Anti-CD39

Intratumoral T Cell Activation Leads to Increased Expression of CD39

BINDING TO RECOMBINANT CD39 BY SPR:

	<i>k</i> _{on} (M⁻¹s⁻¹)	<i>k</i> _{off} (s⁻¹)	<i>К</i> _D (М)
AB598	3.0 x 10 ⁵	7.2 x 10 ⁻⁵	2.4 x 10 ⁻¹⁰
IPH5201 ¹	2.0 x 10 ⁵	1.6 x 10 ⁻³	3.2 x 10 ⁻⁹
TTX-030 ²	1.78 x 10⁵	2.02 x 10 ⁻³	1.13 x 10 ⁻⁸

¹Perrot, I. (2019) Cell Rep. ²Spatola, B. (2020) mAbs.

BINDING AND INHIBITION OF CELL SURFACE CD39 ON PRIMARY HUMAN MONOCYTES:

AB598, 400 µM ATP
 AB598, 0 µM ATP (binding)
 AB598, 20 µM ATP (binding)
 AB598, 20 µM ATP (inhibition)
 IgG1 FcS, 400 µM ATP
 IgG1 FcS, 0 µM ATP (binding)
 IgG1 FcS, 20 µM ATP (inhibition)

- AB598 binds with a fast on-rate to CD39 and dissociates with a slow off-rate, resulting in a long residence time and high, sub-nanomolar affinity to CD39
- AB598 has subnanomolar binding and inhibition of membranebound CD39
- Potent binding and inhibition of CD39 are maintained in the presence of high ATP

AB598 Fully Inhibits CD39 Enzymatic Activity

CD39 is the Dominant ATP Degrading Enzyme in the Tumor Microenvironment

- At the slightly acidic pH of the TME, CD39 is the most active of the extracellular ATP-degrading enzymes
- In primary ex vivo gastric tumors, AB598 inhibited ATPase activity, allowing for elevated extracellular ATP

Increasing ATP Promotes Inflammasome Activation

• Elevated ATP activates the inflammasome to promote cytokine release

11

AB598 Promotes ATP-Dependent Inflammasome Activation

• Elevated ATP activates the inflammasome to promote cytokine release

Statistical significance calculated with a two-way ANOVA using Šídák's multiple comparisons test, *P \leq 0.05, ** P \leq 0.01. Fold change was calculated per donor to the 0 μ M ATP, IgG1 FcS-treated condition. Schematic created with BioRender.com.

12

CONFIDENTIAL © Arcus Biosciences 2023

AB598 Promotes ATP-Dependent Monocyte-Derived Dendritic Cell (moDC) Activation

comparisons test, *P \leq 0.05, ** P \leq 0.01, *** P \leq 0.001. Fold change calculated per donor to the 0 µM ATP, IgG1 FcS-treated condition. Schematic created with BioRender.com.

CONFIDENTIAL © Arcus Biosciences 2023

13

AB598 Promotes ATP-Dependent Monocyte-Derived Dendritic Cell (moDC) Activation

• ATP promotes moDC maturation, an effect amplified by anti-CD39

comparisons test, *P \leq 0.05, ** P \leq 0.01, *** P \leq 0.001. Fold change calculated per donor to the 0 µM ATP, IgG4-treated condition. Schematic created with BioRender.com.

CONFIDENTIAL © Arcus Biosciences 2023

14

AB598 Promotes ATP-Dependent Inflammasome Activation Through P2X7

 High ATP signals through P2X and P2Y receptors on the cell surface

The P2X7

 receptor is
 responsible for
 the ATP dependent
 release of IL-18
 and IL-1β

Statistical significance was calculated with a two-way ANOVA using Dunnett's multiple comparisons test, *** $P \le 0.001$, **** $P \le 0.0001$. Error bars represent the SD. Fold change was calculated per donor to the IgG1 FcS-treated condition.

CONFIDENTIAL © Arcus Biosciences 2023

AB598 Promotes ATP-Dependent Monocyte-Derived Dendritic Cell Maturation Through P2Y11

- High ATP signals through P2X and P2Y purinergic receptors on the cell surface
- The P2Y11 receptor is responsible for the ATP-dependent elevation of CD83 and CD86 seen on monocyte-derived dendritic cells

Chemotherapy Can Induce ATP Release, an Effect Amplified by AB598

Clinically-Relevant Chemotherapies Induce ATP Release in Lung and Stomach Cancer Cell Lines

Human Cancer Cell Lines

- Carboplatin is used in first line treatment of metastatic NSCLC
- FOLFOX (contains oxaliplatin) is used in first line treatment of gastric, GEJ, and colorectal cancers
 - Chemotherapies tested at IC_{90} concentrations for each cell line

AB598 Boosts the Effect of Chemotherapy to Promote MoDC Activation

Statistical significance was calculated with a two-way ANOVA using Tukey's multiple comparisons test and the Geisser-Greenhouse correction, * $P \le 0.05$. Cell type images created with Biorender.com, DOC = docetaxel.

19

AB598 Boosts the Effect of Chemotherapy to Promote Myeloid-Driven T Cell Activation

Four healthy donors. T cells and monocytes matched from the same donor. Statistical significance was calculated using a ratio-paired T test. * $P \le 0.05$, *** $P \le 0.001$.

AB598 Inhibits CD39 to Increase Intratumoral ATP in a MOLP8 Xenograft Model

Statistical significance was calculated with (top panel) a two-way ANOVA with Šidák's multiple comparison test, N = 10 / group or (bottom panel) an unpaired T-test, N = 2 - 4 / group. Error bars represent the SEM. ns = non-significant, *P ≤ 0.05 , ** P ≤ 0.01 , *** P ≤ 0.001 . Samples collected after 48 h for enzymatic activity and intratumoral ATP and 72 h for flow cytometry.

21

CONFIDENTIAL © Arcus Biosciences 2023

In a C57BL/6 Human CD39 Knock-In Mouse Model, Tumor Infiltrating Immune Cells are CD39⁺

22

CONFIDENTIAL © Arcus Biosciences 2023

I BIOSCIENCES

AB598.mlgG2a FcS in Combination with OXA Inhibits CD39 Enzymatic Activity Leading to Increases in Intratumoral ATP

Statistical significance was calculated with a one-way ANOVA with Dunnett's T3 multiple comparisons test, and Brown-Forsythe and Welch ANOVA tests. Error bars represent the SEM, *P ≤ 0.05 , ** P ≤ 0.01 , *** P ≤ 0.001 .

CONFIDENTIAL © Arcus Biosciences 2023

C57BL/6 human CD39 knock-in (hCD39KI) mice provided by Genoway. Mice have MC38 tumors. All images taken at 1.5x magnification.

23

Full Receptor Occupancy in Peripheral Monocytes of Cynomolgus Monkeys Treated with AB598

Robust Receptor Occupancy and Enzymatic Inhibition of CD39 in Tissues of AB598-Dosed Cynomolgus Monkeys

Robust Receptor Occupancy and Enzymatic Inhibition of CD39 in Tissues of AB598-Dosed Cynomolgus Monkeys

Scientific Rationale Supports Clinical Utility of AB598 in Several Solid Tumor Settings

- Dose Escalation: Late-line all comers
- Dose Expansion: Lung and Gastric

ARC-25 Phase 1a/1b Study Design (NCT05891171)

• Primary Outcomes

- Number of participants with Adverse Events (AEs) and Serious Adverse Events (SAEs)
- Dose Escalation Cohorts: Number of participants with Dose-Limiting Toxicities (DLTs)

Secondary Outcomes

- Evaluation of AB598 PK in humans
- Antidrug Antibodies (ADAs) to AB598
- Objective Response Rate (ORR)
- Dose Expansion Cohorts: Duration of Response (DOR)

Summary

- AB598 is a highly potent and specific anti-CD39 antibody which acts by fully inhibiting CD39 enzymatic activity and increasing immunostimulatory ATP levels
- High ATP, which can be achieved intratumorally with chemotherapy in combination with AB598, can activate myeloid cells for a pro-inflammatory anti-tumor response
- Ph1 study in progress in advanced cancer patients

