

Discovery and Optimization of HIF-2α Inhibitors

Ken Lawson

Discovery on Target - Small Molecules for Cancer Targets – Part 2

September 28th, 2023

HIF-2α Drives Physiological Changes to Adapt to Low Oxygen That are Hijacked by the Tumor

- HIF-2α protein levels are exquisitely controlled in the cell
- HIF-2α is a transcription factor comprised of two proteins
 - Stably-expressed β subunit (HIF-1β/ARNT)
 - Oxygen-sensitive α subunit (HIF-2 α)
 - HIF-1 α and HIF-3 α isoforms exist
- Therapeutic Hypothesis
 - HIF-2α drives transcriptional changes that promote tumor progression in hypoxia or pseudohypoxia
 - Disrupting α-β dimer formation will prevent gene transcription and block tumor progression

Fundamentals of Targeting the HIF-2 α /ARNT Complex

- X-ray crystal structure shows internal hydrophobic cavity (~290 Å³) with 8 water molecules¹
 - HIF-1 α lacks analogous hydrophobic cavity
- Basis for regulation of protein-protein interaction:
 - Small molecule binds to HIF-2 α PAS-B cavity
 - \rightarrow conformational change
 - HIF dimerization disrupted
 - \rightarrow gene transcription inactive

Fundamentals of Targeting the HIF-2 α /ARNT Complex

- X-ray crystal structure shows internal hydrophobic cavity (~290 Å³) with 8 water molecules¹
 - HIF-1 α lacks analogous hydrophobic cavity
- Basis for regulation of protein-protein interaction:
 - Small molecule binds to HIF-2 α PAS-B cavity
 - \rightarrow conformational change
 - HIF dimerization disrupted
 - \rightarrow gene transcription inactive
- Design challenges:
 - Small internal pocket limits ligand size
 - Binding affinity may not correlate with functional activity
 - High affinity ligands often possess undesirable physicochemical properties (high lipophilicity)
 - Intellectual property considerations

Status and Characterization of Clinical HIF-2α Inhibitors

 HIF-2α inhibition (Belzutifan) has demonstrated significant clinical activity in patients with advanced ccRCC¹

	Belzutifan	AB521	NKT2152 ^a	Compound A^b
	(Peloton/Merck)	(Arcus)	(NiKang)	(Novartis)
Assay	F F CN F CN F CN F F CN F F OH SO ₂ Me	Structure not disclosed		F ₃ C F F C F C C F
ccRCC Clinical Trial Status	Phase 3°	Phase 1/1b	Phase 1/2	Phase 1/1b
HIF-2α Reporter Gene Assay ^d	17 ± 10	8.2 ± 2.5	5.3 ± 1.4	19 ± 8.7
IC ₅₀ (nM)	(n = 8)	(n = 24)	(n = 3)	(n = 9)
Reporter Control ^d IC ₅₀ (nM)	> 10,000	> 10,000	> 10,000	> 10,000
HIF-2α 786-Ο Luc. 100%	62 ± 6.6	47 ± 14	120 ± 13	270 ± 73
Serum IC ₅₀ (nM)	(n = 4)	(n = 24)	(n = 2)	(n = 9)

^aPrepared according to WO2022086822. ^bPrepared according to WO2021220170, compound A. ^cBelzutifan is approved for treatment of VHL disease. ^d786-O renal adenocarcinoma cells (mutant for VHL and HIF-1α) stably expressing HIF or control CMV luciferase (Luc) reporter constructs

 Arcus's clinical HIF-2α inhibitor, AB521, is presently in clinical development and has demonstrated a favorable PK/PD and safety profile in healthy human volunteers

Design and Discovery of Arcus Back-up HIF-2α Inhibitors

 Pharmacophore mapping and structure-aided design approach toward novel starting points


```
PT2385
                                          = 35.7 <sub>nM</sub>
HIF-2α Biochemical (SPA) IC<sub>50</sub>
HIF-2\alpha Cell-Based (Luc) IC<sub>50</sub> = 27.4 nM
= 186 nM
HIF-2α 100% Serum (Luc) IC<sub>50</sub>
```

(Peloton's 1st-generation HIF-2a inhibitor)

Cycloalkyl[c]thiophenes HIF-2a inhibitors by Merck KGaA³

PT2385 bound to HIF-2α PAS-B domain¹

Key HIF-2α PAS-B/inhibitor interactions:

Y281 $n \rightarrow \pi^*$ - Interaction is stronger when aromatic ring (B) is electron deficient² H293-[PT2385]-[H₂O]-Y281 Hydrogen bonding network is critical for binding A-Ring – Hydrophobic/non-specific interactions

Compound 1 20,000 nM

HIF-2 α Cell-Based IC₅₀ > 10,000 nM > 40,000 nM

Tetrahydroindazole Core Design

HIF-2 α Biochemical IC₅₀

HIF-2α 100% Serum (Luc) IC₅₀

¹J. Med. Chem. 2018, 61, 21, 9691–9721; ²Phys. Chem. Chem. Phys., 2015, 9596; ³J. Med. Chem. 2023, 66, 13, 8666–8686

Moderate-to-Good Potency Observed with Aliphatic A-Ring Replacements

- Incorporation of lipophilic side-chains led to significant potency gains
 - Generally good correlation between biochemical binding (SPA) and cell-based functional assays (786-O Luciferase)

F F OH CF ₃	\sim	Me	Me	Me Me	F₃C∽∽∕	
Compound ID	2	3	4	5	6	7
HIF-2α Biochemical IC ₅₀ (nM)	> 20,000	4,850	946	164	89.2	44.1
HIF-2α Cell-Based (nM)	> 10,000	4,610	727	154	59.2	116
HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	> 40,000	> 40,000	> 40,000	4,780	736	965

Moderate-to-Good Potency Observed with Aliphatic A-Ring Replacements

- Incorporation of lipophilic side-chains led to significant potency gains
 - Generally good correlation between biochemical binding (SPA) and cell-based functional assays (786-O Luciferase)

F OH N=CF ₃	\sim	Me	Me	Me Me	F ₃ C	
Compound ID	2	3	4	5	6	7
HIF-2α Biochemical IC ₅₀ (nM)	> 20,000	4,850	946	164	89.2	44.1
HIF-2α Cell-Based (nM)	> 10,000	4,610	727	154	59.2	116
HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	> 40,000	> 40,000	> 40,000	4,780	736	965
Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat	-	-	95 / 190	-	260 / 110	270 / 160
CYP Inh. IC₅₀ (µM) 2C8 / 2C9 / 2C19 / 2D6 / 3A4	-	-	-	-	-	>40 / >40 / 8.1 / 18 / 30
CYP TDI (% Act. loss, 30 min) 2C8 / 2C9 / 2D6 / 3A4	-	-	-	-	-	0/0/2/6

• Lipophilic inhibitors offered sub-optimal properties (oils) and poor hepatocyte stability

Balancing Polarity of Side-Chains Reduces Hepatocyte Intrinsic Clearance

 Sulfone-containing side-chains '0113 and 0309 demonstrate reduced clearance to human and rat hepatocytes

- Reduced HIF-2α potency was observed with incorporation of polar groups

 Cyclic motifs exhibit reduced potency, but improved hepatocyte stability despite high lipophilicity

A Highly Electron Deficient Pyrazole is Required to Retain HIF-2α Potency

- Strong electron withdrawing groups (e.g. –CF₃) are highly preferred at pyrazole C3 position
 - Sulfone and nitrile groups lead to reduced SAR, contrasting published SAR for binding in this region

Reducing lipophilicity by replacement of trifluoromethyl group was untenable

[6,5] and [5,5]-Cycloalkyl-Pyrazole Inhibitors Exhibit Similar Potency

- Investigation of cycloalkyl-carbinol revealed [6,5] and [5,5] rings systems exhibited similar potency
 - Larger [7,5] rings or acyclic inhibitor designs were inactive

Further Investigation of [5,5]-Core Scaffold Revealed SAR Divergence

- Broadly, HIF-2 α potency for acyclic pyrazole-N1 side chains track well
- In contrast, substituted cyclohexane substituents are only well-tolerated in [5,5]-core
 - Cyclohexane containing analog '1190 exhibited Low CL_{int} in human hepatocytes

Further Optimization of B-Ring Cyclohexane Increased Potency and Improved Metabolic Stability in vitro

- Pharmacokinetic properties were highly variable, but broadly improved with increased polarity of cyclohexyl group
 - Syn-fluorine substitution proved optimal pathway to increase polarity without diminishing target potency

Further Optimization of B-Ring Cyclohexane Increased Potency and Improved Metabolic Stability in vitro

- Pharmacokinetic properties were highly variable, but broadly improved with increased polarity of cyclohexyl group
 - Syn-fluorine substitution proved optimal pathway to increase polarity without diminishing target potency

Lead Inhibitors Exhibit Encouraging Potency and Pharmacokinetic Profile

Compound ID	28	30
HIF-2 α Cell-Based (nM)	60.4	39.2
HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	336	154
Hepatocyte CL _{int} (μL/min/10 ⁶ cells) hu / rat	6.3 / 3.9	5.0 / 13
CYP Inh. IC₅₀ (μM) 2C8 / 2C9 / 2C19 / 2D6 / 3A4	>40 / >40 / >40 / >40 / >40 / >40	>40 / >40 / >40 / >40 / >40 / >40
CYP TDI (% Act. loss, 30 min) 2C8 / 2C9 / 2D6 / 3A4	0/0/0/3.7	0/0/0/0
MDCK-II-MDR1 P _{app} (A-B, cm/s•10-6)	30 (ER = 0.9)	33 (ER = 0.6)
Plasma Protein Binding (%Unbound, UC)	n.d.	23% / 21%
Rat PK Parameters: CL (L/h/kg) / %F	2.5 / 129%	5.2 / 67%

Progress towards target profile for 2nd-Gen Inhibitors

Favorable attributes of lead inhibitors

- Target potency in HIF-2α serum assay
- ✓ Low CL_{int} in human hepatocytes
- ✓ Clean CYP inhibition profile
- High permeability/predicted oral bioavailability

Areas for continued optimization

• Poor correlation of systemic clearance in rodents with in vitro predictors

Metabolite ID Reveals O-Glucuronidation as Primary Metabolic Pathway

Compound ID	28	30
HIF-2α Cell-Based (nM)	60.4	39.2
HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	336	154
Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat	6.3 / 3.9	5.0 / 13
CYP Inh. IC₅₀ (μM) 2C8 / 2C9 / 2C19 / 2D6 / 3A4	>40 / >40 / >40 / >40 / >40 / >40	>40 / >40 / >40 / >40 / >40 / >40
CYP TDI (% Act. loss, 30 min) 2C8 / 2C9 / 2D6 / 3A4	0/0/0/3.7	0/0/0/0
MDCK-II-MDR1 P _{app} (A-B, cm/s•10-6)	30 (ER = 0.9)	33 (ER = 0.6)
Plasma Protein Binding (%Unbound, UC)	n.d.	23% / 21%
Rat PK Parameters: CL (L/h/kg) / %F	2.5 / 129%	5.2 / 67%

Progress towards target profile for 2nd-Gen Inhibitors

Favorable attributes of lead inhibitors

- ✓ Target potency in HIF-2 α serum assay
- ✓ Low CL_{int} in human hepatocytes
- ✓ Clean CYP inhibition profile
- High permeability/predicted oral bioavailability

Areas for continued optimization

- Poor correlation of systemic clearance in rodents with in vitro predictors
- Metabolite ID identified unfavorable metabolic pathway

Tuning Cyclopentapyrazole Fluorine Pattern Reduces Clearance and Minimizes O-Glucuronidation

Compound ID	28	30	31	32	33
HIF-2α Cell-Based (nM)	60.4	39.2	14.0	104	52.0
HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	336	154	62.4	269	190
Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat	6.3 / 3.9	5.0 / 13	8.7 / 21	<2.7 / <2.7	< 2.7 / 3.3
CYP Inh. IC₅₀ (μM) 2C8 / 2C9 / 2C19 / 2D6 / 3A4	>40 / >40 / >40 / >40 / >40 / >40	>40 / >40 / >40 / >40 / >40 / >40	>40 / >40 / >40 / >40 / >40 / >40	>40 / >40 / 25 / >40 / >40	>40 / >40 / >40 / >40 / >40 / >40
CYP TDI (% Act. loss, 30 min) 2C8 / 2C9 / 2D6 / 3A4	0/0/0/3.7	0/0/0/0	0/0/0/0.1	2.5 / 0 / 0.5 / 0	0/0/0/0
MDCK-II-MDR1 P _{app} (A-B, cm/s•10-6)	30 (ER = 0.9)	33 (ER = 0.6)	-	29 (ER = 1.0)	31 (ER = 0.8)
Plasma Protein Binding (%Unbound, UC)	n.d.	23% / 21%	-	48% / 47%	47% / 60%
Rat PK Parameters: CL (L/h/kg) / %F	2.5 / 129%	5.2 / 67%	-	2.8 / 149%	1.3 / 35%

Compound 33 is Projected to have a Pharmacokinetic Profile Suitable for QD Dosing

 Compound 33 is stable to human hepatocytes and intestinal microsomes, and it exhibits low efflux potential (Caco-2)

	Hepatocytes				In vivo	
Species	CL_{int} (µL/min/10 ⁶ cells)	T_{1/2} (h)	f _{u,p}	CL (L/h/kg)	Vss (L/kg)	T_{1/2} (h)
Mouse	33.5	10.8	0.443	2.13	1.59	1.56
Rat	3.20	10.3	0.597	1.25	3.1	2.71
Dog	540	>40	0.576	0.740	0.98	1.55
Human	1.00	>40	0.465	0.064 ^a projected	1.12 projected	12 projected

Table: Summary of experimental PK parameters in mouse, rat, and dog. Rats were dosed 0.5 mg/kg IV in DMAC:EtOH:polyethylene glycol (31.6:36.8:31.6). Mice were dosed 1 mg/kg IV in DMAC:Ethanol:Propylene Glycol:Saline (10:10:30:50). Dogs were dosed 1.0 mg/kg IV in DMA/PG/water (1:1:1).

Compound 33 is Projected to have a Pharmacokinetic Profile Suitable for QD Dosing

Predicted steady state human PK profile of Compound 33

Predicted Human PK Parameters					
CL (L/h/kg)	0.06	64			
V _{ss} (L/h) 1.12					
T _{1/2} (h) 12					
Potency and Exposure Target of 33					
HIF-2 α 100% human serum IC ₅₀ (nM) 190					
HIF-2 α 100% human serum IC ₉₀ (nM) 1710					

Compound 33 is predicted to possess excellent oral bioavailability and limited potential for DDI in humans

Compound 33 is Projected to have a Pharmacokinetic Profile Suitable for QD Dosing

Compound **33** bound to HIF-2a/ARNT dimer, 1.9Å resolution

Predicted Human PK Parameters						
CL (L/h/kg) 0.064						
V _{ss} (L/h) 1.12						
T _{1/2} (h) 12						
Potency and Exposure Target of 33						
HIF-2 α 100% human serum IC ₅₀ (nM) 190						
HIF-2 α 100% human serum IC ₉₀ (nM) 1710						

 Compound 33 is predicted to possess excellent oral bioavailability and limited potential for DDI in humans

Compound 33 is Synthesized in high Stereochemical Purity following 14-steps which Install six Stereocenters

• With minimal optimization the current synthetic route enabled the preparation of gram quantities of **33** to support preclinical characterization

Arcus Inhibitors Potently Inhibit HIF-2α Function under Physiologically Relevant Conditions

Characterization of 33, AB521, and select competitor molecules in clinical development

	Assay	Compound 33	AB521	Belzutifan	Compound A ^a (Novartis)
сV	HIF-2 α Cell-Based IC ₅₀ (nM)	52.0 ± 1.2 (n = 2)	8.21 ± 2.48 (n = 24)	16.9 ± 10.1 (n = 8)	18.9 ± 8.7 (n = 9)
oten	Cell-Based Reporter Control (nM)	> 10,000	> 10,000	> 10,000	> 10,000
۵.	HIF-2α Cell-Based 100% Serum IC ₅₀ (nM)	190 ± 54 (n = 2)	46.49 ± 14.2 (n = 24)	61.78 ± 6.58 (n = 4)	265 ± 73 (n = 9)
	Rat PK Parameters: CL (L/h/kg) / %F	1.25 / 35%	0.909 / 51%	1.14 / -	0.08 / 80%
Ч	Hepatocyte CL _{int} (μL/min/10 ⁶ cells) human / rat	<2.7 / 3.3	<2.7 / <2.7	<2.7 / 22.0	<2.7 / 3.2
DM	CYP TDI (% Activity loss, 30 min) 2C8 / 2C9 / 2D6 / 3A4	0.0 / 0.0 / 0.0 / 0.0	7.9 / 2.9 / 1.3 / 9.4	0.0 / 0.0 / 4.1 / 2.7	0.0 / 0.0 / 0.0 / 0.0
	CYP Inh. IC ₅₀ (µM) 2C8 / 2C9 / 2C19 / 2D6 / 3A4	>40 / >40 / >40 / >40 / >40 / >40	>40 / 37.0 / 30.4 / >40 / >40	>40 / >40 / 23.7 / >40 / >40	19.6 / 38.6 / 4.03 / 2.17 / >40

ARCUS BIOSCIENCES

^aPrepared according to WO2021220170, compound A.

Compound 33 is a Potent and Selective Inhibitor of HIF-2 α

- Hypoxia inducible factors (HIFs) are responsible for driving transcriptional changes upon exposure to low oxygen (Hypoxia)
- Iterative interrogation of structure activity relationship trends and structure-based design culminated in the discovery of potent and selective backup HIF-2 α inhibitors
 - Structurally distinct from AB521 and competitor molecules
- Compound **33** potently binds the HIF-2 α PAS-B domain and inhibits HIF-2 α function in vitro
- Compound 33 is predicted to possess excellent oral bioavailability and low DDI potential in humans

