ACS Spring 2024 **Division of Medicinal Chemistry** Poster Board #1317 Paper ID: 3996168

OVERVIEW

- Preclinical and clinical evidence suggests that HIF-2α inhibition is a valid approach to destroy tumor cells, particularly in clear cell renal carcinoma (ccRCC) and tumors associated with mutant pVHL.^{1,2}
- Our team has discovered a new series of HIF-2α inhibitors based on cycloalkylpyrazoles and performed their structure-activity relationship optimization study.
- Herein we present our key SAR findings and comprehensive pharmacology/DMPK characterization of top HIF-2a inhibitors in cycloalkylpyrazole series.

HIF-2α BIOLOGY & REGULATION

- Cancer cells adaptation to tumor hypoxic microenvironment requires induction of hypoxia response element (HRE) genes in response to oxygen shortages resulting in disease progression via increased angiogenesis, proliferation and metastasis.
- * The hypoxic response is mediated transcriptionally via Hypoxia-Inducible Factor (HIF) proteins consisting of oxygen regulated HIF-1a, HIF-2a, and HIF-3a isoforms that heterodimerize with corresponding constitutively-expressed beta monomer (HIF- 1β /ARNT) followed by nuclear translocation and expression of HRE genes.³
- * The small-molecule inhibition of HIF-2α transcriptional activity via disruption of HIF-2a/ARNT transcription dimer complex formation is an effective cancer treatment strategy well established in animal models and clinical settings.⁴

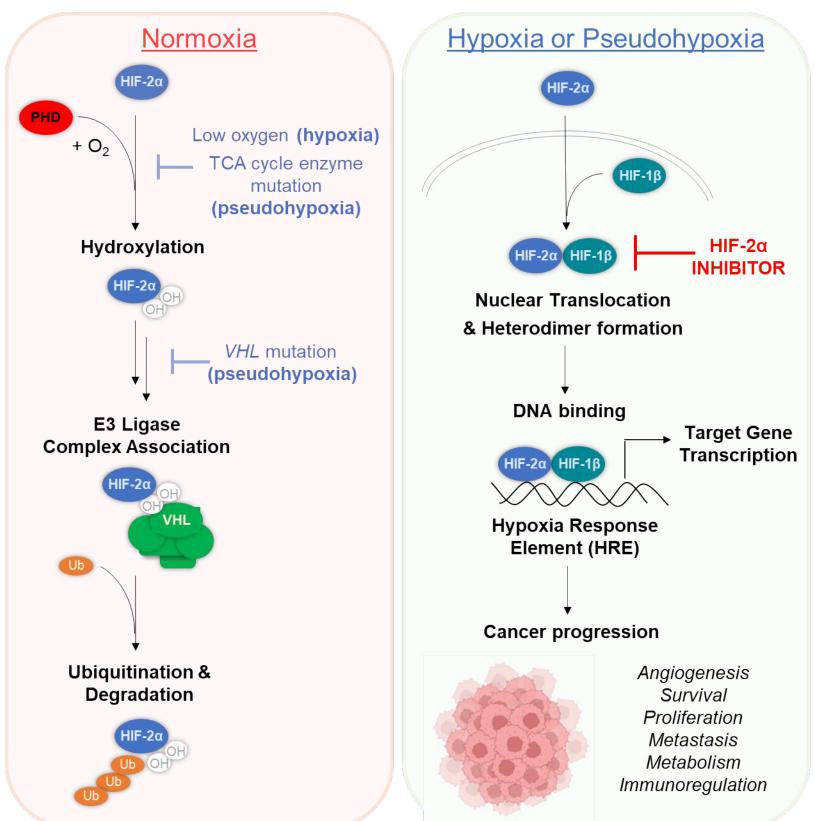
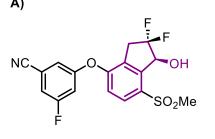



Figure 1. Overview of HIF-2a regulation. In normoxia (left), proline residues present in the oxygen-dependent degradation domain (ODDD) of HIF-2a are hydroxylated by prolyl hydroxylases (PHDs), allowing for recognition by the von Hippel-Lindau (pVHL) E3-ubiquitin ligase complex and subsequent ubiquitination and proteasomal degradation. Upon exposure to low oxygen conditions (hypoxia, right) or in the case of *vhl* mutation or silencing (pseudohypoxia), HIF-2α subunits accumulate and dimerize with HIF-1β/ARNT, resulting in transcription of various gene sets, some of which are pro-tumorigenic, downstream of hypoxia-response element (HRE) DNA pinding sites. Adapted from Yu et al.5.

Our design strategy commenced with structural analysis of existing HIF-2a inhibitors and their key binding elements to HIF-2a PAS-B domain. Based on prevalence of HIF-2a inhibitors featuring 1-indanol moiety^{6,7} we decided to perform replacement of this functional group with corresponding [6,5] and [5,5]-cycloalkyl-pyrazoles, while preserving the α-fluorinated alcohol moiety responsible for forming hydrogen bonding network with H293, Y281 and water molecule previously observed for PT2385 (Figure 1). Selected clinical stage HIF-2 inhibitors

1. PT2385 Peloton Therapeutics Phase I discontinued in favor of 2

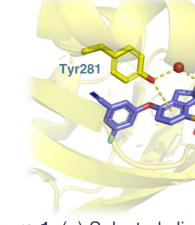
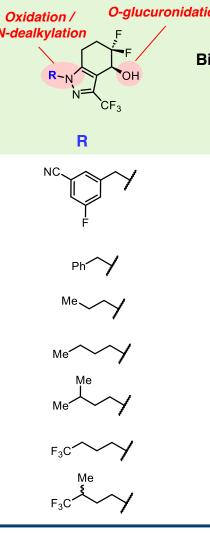
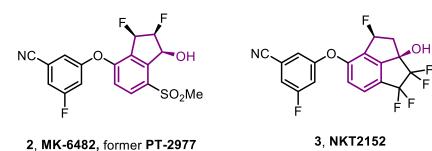



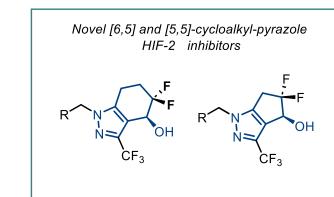
Figure 1. (a) Selected clinical stage HIF-2a inhibitors. (b) X-ray structure of HIF-2a with bound small molecule inhibitor PT2385 (PDB: 6E3S). Binding is facilitated by H293-[PT2385]-[H₂O]-Y281 hydrogen bonding network, Y281 n \rightarrow PT2385 π^* and phenoxide moiety hydrophobic interactions. (c) Initial structural design of cycloalkyl-pyrazole HIF-2a inhibitors.

glucuronidation of cyclohexanol moiety. nours (h) at $37^{\circ}C 5\% CO_2$


Discovery and Optimization of HIF-2d Inhibitors

Artur K Mailyan, Kenneth V Lawson, Jeremy T A Fournier, Maša Podunavac, Guillaume Mata, Clayton Hardman, Kai Yu, Matthew Epplin, Brandon R Rosen, Joel W Beatty, Samuel L. Drew, Elaine Ginn, Ada Chen, Patricia Fabila, Kelsey E Sivick Gauthier, Casey G Mitchell, Cesar A Meleza, Lixia Jin, Manmohan Leleti

Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545, USA


DESIGN, OPTIMIZATION, AND CHARACTERIZATION OF NOVEL HIF-2a INHIBITORS

Initial Drug Design and Optimization

elzutifan (Welireg^T loton Therapeutics (aquired by Merck)

oved for VHL disease and post-IO ccRC(

Nikang Therapeutics

on HIF-2α iochemical IC ₅₀ (nM)	HIF-2a Cell- Based IC ₅₀ (nM)*	HIF-2a Cell- Based 100% Serum IC ₅₀ (nM)	Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat
>20,000	>10,000	>40,000	n.d.
>20,000	>10,000	>40,000	n.d.
4,850	4,610	>40,000	
946	727	> 40,000	95 / 190
164	154	4,780	
89.2	59.2	736	260 / 110
44.1	116	965	270 / 160

Table 1. The initial SAR profiling of pyrazole N-substitution allowed for a rapid identification of lead N-fluoroalkylpyrazole derivatives. The poor metabolic stability observed for this series was attributed to CYP-mediated N-dealkylation and

 * HIF-2lpha and Cellular Reporter Assay. 786-O renal adenocarcinoma cells (mutant for VHL and HIF-1lpha) stably expressing HIF-2α CMV luciferase reporter constructs (Qiagen) were treated with Arcus compounds for 20

Identification of Compounds with Improved Metabolic Stability

F R-N CF ₃ [5,6] R	Compound ID	HIF-2a Cell-Based IC ₅₀ (nM)	HIF-2a Cell- Based 100% Serum IC ₅₀ (nM)	Hepatocyte CL _{int} (μL/min/10 ⁶ cells) hu / rat	R-N [5,5] Compound ID
F F	4a	49.3	328	235 / 174	5a
F ₃ C	4b	12.9	59.0	63 / 184	5b
F ₃ C	4c	>20,000	>40,000	n.d.	5c
NC	4d	164	217	37 / 192	5d
0,0 Me ^{_S}	4e	383	2,200	<2.7 / 32.2	5e
F-F	4f	767	>40,000	<2.7 / 4.79	5f
F	4g	1,670	>40,000	n.d.	5g

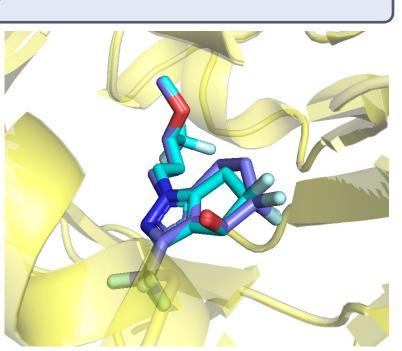
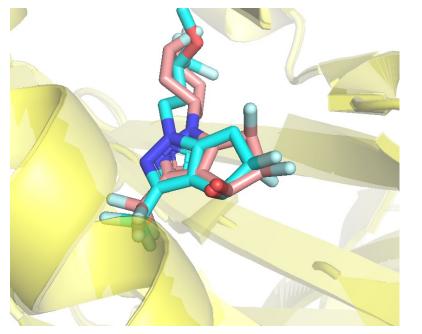
Table 2. Broad screening of N1-substitution of [5,6] and [5,5]-cycloalkyl-pyrazoles afforded compounds with improved metabolic stability featuring sulfone and varied polyfluorinated cycloxehane N1-substituents. [5,5]-cycloalkyl-pyrazole derivatives consistently demonstrated improved HIF-2a potency over their [5,6]-bicyclic counterparts.

Structural optimization of sulfone-containing [5,5]-cycloalkyl-pyrazole inhibitors

R^4 $R^3 R^2$ R^4 R^5 F R^1 -N CF_3 R^1	н	R ²	R ³	R ⁴	HIF-2α Cell-Based IC ₅₀ (nM)	HIF-2a Cell- Based 100% Serum IC ₅₀ (nM)	Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat	R ⁴ ^{R³ R² R¹.N (5,5] R¹}	н	R ²	R ³	R ⁴	HIF-2α Cell- Based IC ₅₀ (nM)	HIF-2a Cell- Based 100% Serum IC ₅₀ (nM)	Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat
O=S U	6a	F	Н	Н	330	890	< 2.7 / 4.0		7a	F	Н	Н	174	1,240	11.5 / 17.5
0=5 	6b	F	н	Н	4,940	22,300	n.d.	F F	7b	F	Н	Н	253	1480	n.d.
0=\$7	6c	F	Н	Н	1,930	5,980	n.d.	F F	7c	F	Н	н	6,300	584	n.d.
	1							Ę	7d	F	Н	Н	154	39.2	5.2 / 67.2
0,0								F/,	7e	H	F	H	52	190	< 2.7 / 3.3
, ^{'s;} , 1	6d	F	Н	н	5,660	27,000	n.d.		7f Za		H F	F	430	7690	-
L.	1				,				7g	 	<u>г</u> Н	<u>H</u>	<u>12</u> 60	42	13.2 / 15.1
 	6e	F	н	Н	208	411	5.04 / 46.8	F	7h	I		Н		336	6.3 / 3.9
	6f	Н	Н	Н	680	1,450	<2.7 / 7.24	F,	7 i	Н	F	Н	104	269	< 2.7 / < 2.7
\sim	6g	F	F	H	354	1,050	n.d		7j	Н	Н	F	581	5,360	-
o=s√	6h	F	Н	F	202	550	9.7 / 51.0	F' 🗡 🎽	7k	F	F	Н	19	93	8.7 / 20.7
<u> </u>	6i	Н	F	Н	1,620	7,190	n.d		71	F	Н	F	87	667	-

Table 3. Structural modification of [5,5]-cycloalkyl-imidazoles containing sulfone moiety. An extensive modification of polyfluorocyclopentanol fragment in compounds featuring the most promising thiethane dioxide fragment (6e-i) resulted in an identification of compound 6e featuring adequate combination of HIF-2a potency and metabolic stability in this series.

HIF-2α Cell- Based IC ₅₀ (nM)	HIF-2a Cell-Based 100% Serum IC ₅₀ (nM)	Hepatocyte CL_{int} (μL/min/10 ⁶ cells) hu / rat
66.4	204	358 / 418
20.1	97.9	98 / 226
8,600	>40,000	n.d.
42.7	111	17 / 87
387	812	12.7 / 31.8
86.6	628	70 / 27
41.3	372	6.3 / 23.3

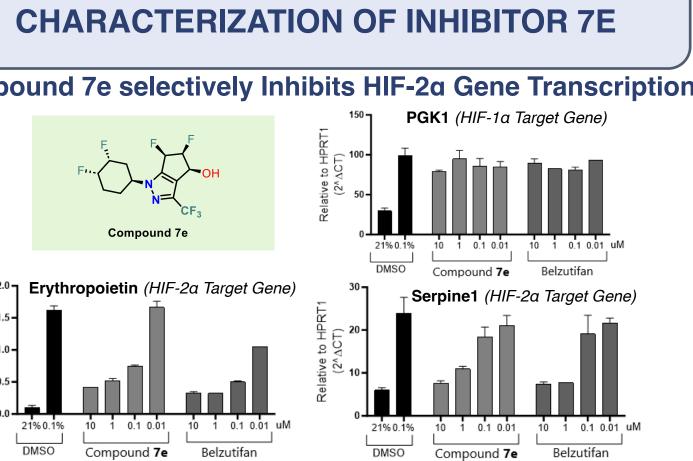

Figure 2. Overlay of X-ray structures for compounds **4b** and **5b** bound to HIF-2α PAS-B domain

Figure 3. Overlay of X-ray structures for compounds 5b and 7e bound to HIF-2a PAS-B domain

Fluorination pattern screening for N-cyclohexyl [5,5]-cycloalkyl-pyrazole inhibitors

Table 4. SAR study of N-cyclohexyl-[5,5]-cycloalkyl-imidazoles with diverse fluorination pattern. Incorporation of 3,4-syn-difluoro- and 3,4,5syn-trifluorocyclohexane N-substituents in combination with syndilfuorination pattern of the core structure afforded compounds **7e** and **7i** that were selected for further characterization.

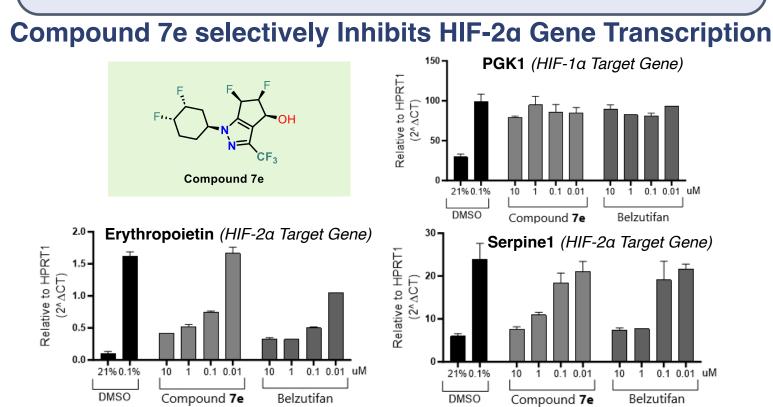


Figure 4. Compound 7e inhibits HIF-2a-, but not HIF-1a- mediated transcription of provith 10 nM to 10 μ M of **7e** or MK-6482 and exposed to hypoxia (1% O₂) for 16 hours. Gene expression levels of HIF-2a target genes (EPO and PAI-1) and HIF-1a gene PGK1 were determined by qPCR relative to HPRT1 (2^{- Δ Ct}).

Pharmacokinetic Profiling of 7e in Preclinical Species

Compound 7e	In Vitro (Hepa	tocytes)	In vivo			
Species	CL_{int} (µL/min/10 ⁶ cells)	f _{u,p}	CL (L/h/kg)	Vss (L/kg)	Τ_{1/2} (h)	
Mouse	33.5	0.443	2.13	1.59	1.56	
Rat	3.20	0.597	1.25	3.1	2.71	
Dog	5.40	0.576	0.740	0.98	1.55	

Table 5. Compound **7e** exhibits a favorable pharmacokinetic profile characterized by moderate-to-low clearance in preclinical species and is stable to human hepatocytes.

- (786-O cells) assay.
- optimization in contrast to their [5,6]-bicyclic counterparts.
- of HIF-2a target genes in Hep3B hepatocellular carcinoma cells.

- Suarez et al. (2023) Med. Sci., 11 (3), 46; 2) Toledo et al. (2022) Endocr. Rev., 44 (2), 312; 3) Majmundar et al. (2010) Mol. Cell., 40 (2), 294 7) Buchstaller (2023) J. Med. Chem., 66, 8666
- 4) Wicks et al. (2022) J. Clin. Invest., 132, e159839

ARCUS BIOSCIENCES

PHARMACOLOGY / DMPK

SUMMARY

We have identified a new series of potent and isoform selective HIF-2a inhibitors based on the cycloalkylpyrazole scaffold. The SAR study was designed utilizing biochemical SPA assay and HIF-2a-dependent transcription in a HIF-2a-specific luciferase reporter transcription cell based

Compounds based on a [5,5]-cycloalkylpyrazole core demonstrated broader tolerance to structural modification during the initial lead

Systematic approach towards analogs with decreased lipophilicity yielded potent HIF-2a inhibitors 6e, 7e, 7i, characterized by low rate of metabolic degradation measured upon incubation with human and rat hepatocytes.

Sased on balanced combination of HIF-2α potency and metabolic stability compound 7e was selected for comprehensive pharmacology and ADME profiling. This compound demonstrated low DDI-potential in CYP inhibition assays, low in vivo clearance and excellent bioavailability in rodents. Additionally, compound **7e** selectively and efficaciously inhibited expression

REFERENCES

5) Yu et al. (2019) Drug Disc Today 00, 1-9; 6) Xu et al. (**2019**) *J. Med. Chem.*,62, 6876;