Phase Ib/II, global, open-label, randomized evaluation of atezolizumab (atezo) + etrumadenant (etruma) + chemotherapy (chemo) vs chemo alone in MORPHEUS-PDAC

Kyu-pyo Kim,¹ Mariano Ponz-Sarvise,² Teresa Macarulla,³ Angela Alistar,⁴ Eileen M. O'Reilly,⁵ Mathew Boakye,⁶ Hen Prizant,⁷ Trista Xu,⁸ Fiona Young,⁹ Janet Lau,⁷ Do-Youn Oh,¹⁰ Jill Lacy¹¹

¹Asan Medical Center, Seoul, Republic of Korea; ²Cancer Center Clinica Universidad de Navarra, Pamplona, Spain; ³Vall d'Hebron University Hospital, Barcelona, Spain; ³Vall d'Hebron Universidad de Navarra, Pamplona, Spain; ³Vall d'Hebron University Hospital, Barcelona, Spain; ⁴Atlantic Hematology Oncology, Atlantic Medical Group, Morristown, NJ, USA; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁶Arcus Biosciences, Hayward, CA, USA; ⁷Genentech, Inc, South San Francisco, CA, USA; ⁸F. Hoffmann-La Roche Ltd, Mississauga, Canada; ⁹F. Hoffmann-La Roche Ltd, Welwyn Garden City, UK; ¹⁰Seoul National University College of Medicine, Seoul, Republic of Korea; ¹¹Yale School of Medicine, New Haven, CT, USA

INTRODUCTION

- Extracellular adenosine accumulation can occur in the tumor microenvironment in response to factors including hypoxia, cell turnover, and inflammation.¹⁻³ Adenosine signaling via the A2a and A2b receptors on immune cells suppresses the anti-tumor immune response and promotes tumor immunity in many cancers, including pancreatic ductal adenocarcinoma (PDAC)²⁻⁴
- Combining adenosine signaling inhibition with immunotherapy may therefore enhance anti-tumor activity⁵ Etrumadenant is a small-molecule, dual-adenosine A2a/A2b receptor antagonist that has shown encouraging activity and a favorable safety profile in multiple tumor types, as monotherapy or in combination with chemotherapy/immunotherapy^{6,7}
- Atezolizumab is a monoclonal antibody targeting the immune checkpoint protein programmed deathligand 1 (PD-L1) that binds and inhibits PD-L1 on tumor cells and/or tumor-infiltrating immune cells and restores the antitumor immune response^{8,9}
- The MORPHEUS platform consists of multiple, global, open-label, randomized, umbrella Phase lb/II trials designed to accelerate the development of combinations in several indications by identifying early signals and establishing proof-of-concept clinical data^{10,11}
- Trials under the MORPHEUS platform are assessing the importance of simultaneously targeting multiple mechanisms of immune escape through immune cell priming and activation, tumor infiltration and/or recognition of tumor cells for elimination
- Using a randomized trial design, multiple combination arms are being compared with a single control arm, thereby reducing the number of patients receiving control treatment
- Here, we present the 108-week final analysis of the atezolizumab + etrumadenant + chemotherapy arm in MORPHEUS-PDAC Cohort 1 (patients with PDAC treated in the first-line [1L] setting)

METHODS

Study Design

- The MORPHEUS-PDAC study design is presented in Figure 1. Patients who had no prior systemic treatment for metastatic PDAC (Cohort 1, 1L PDAC) were randomized to receive atezolizumab + etrumadenant + chemotherapy or chemotherapy alone (control)
- Key inclusion criteria included Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 or 1, age >18 years, baseline biopsy and measurable disease per Response Evaluation Criteria in Solid Tumors Version 1.1 (RECIST 1.1)
- Key exclusion criteria included symptomatic, untreated, or actively progressing nervous system metastases, active or history of autoimmune disease or immune deficiency, and a history of idiopathic pulmonary fibrosis, organizing pneumonia, drug-induced pneumonitis, idiopathic pneumonitis or evidence of active pneumonitis
- Patients were treated until loss of clinical benefit or unacceptable toxicity. Additionally, patients in the chemotherapy arm who had disease progression (PD) had the option to enroll in Cohort 2 (secondline PDAC), provided that experimental treatment arms were open for enrollment and that patients met the eligibility criteria and signed the appropriate informed consent form

Biomarker Analysis

- Detection and quantification of biomarkers was performed by staining of formalin-fixed paraffin-
- embedded tumor tissue using immunofluorescence (IF) or immunohistochemistry (IHC):
- Multiplex IF panel containing CD73 (clone D7F9A), TNAP (clone R034), PanCK (clone AE1/AE3/PCK26), CD8 (SP239) and PD-L1 (clone SP263) (atezolizumab + etrumadenant + chemotherapy arm; Ventana)
- CD73 (clone D7F9A) IHC assay (atezolizumab + etrumadenant + chemotherapy arm; Cell Carta)
- PD-L1 (clone SP263) IHC assay (chemotherapy arm; Cell Carta)
- CD8 (clone SP239) and panCK (clone AE1/AE3/PCK26) duplex IHC assay (atezolizumab + etrumadenant + chemotherapy arm and chemotherapy arm; Cell Carta)

Primary Efficacy Endpoint

• Objective response rate (ORR), determined by the investigator per RECIST 1.1

Key Secondary Efficacy Endpoints and Other Analyses

- Progression-free survival (PFS), overall survival (OS), duration of response (DOR) disease control rate (DCR)
- Long-term safety and exploratory biomarker analyses were also conducted

RESULTS

Patients

- arm, respectively Table 1.

Patients, n (Age ≥ 65 yea

Male Race Asian

- Black or Af White Unknown ECOG PS 1
- Prior cancer No

Prior cancer

No. of metast Median Range

Liver metas Yes Clinical cutoff: Janu ^a Taken from cancer

Efficacy

Table 2

Confirmed n (%) [95%

CR PR

SD, n (%) [95% CI] PD, n (%) [95% CI] NE, n (%) Missing, n DCR, n (%) [95% CI] DOR, mont

t-baseline respons confidence interval; SD, stable disease. e unconfirmed responder in the atezo + etruma + chemo arm; 2 unconfirmed responders in the chemo arm

Figure 2. Kaplan-Meier Plot of PFS

• As of the clinical cutoff date (January 12, 2023), 16 patients were enrolled in the atezolizumab + etrumadenant + chemotherapy arm and 21 in the chemotherapy arm (intention-to-treat population) - 15 and 20 patients received treatment in the atezolizumab + etrumadenant + chemotherapy arm and chemotherapy arm, respectively (efficacy- and safety-evaluable population)

• Baseline demographics were generally similar between treatment arms (Table 1), except there were fewer patients aged \geq 65 years (31.3% vs 71.4%; Δ –40.2%) and more patients with liver metastases (87.5% vs 71.4%; Δ16.1%) in the atezolizumab + etrumadenant + chemotherapy arm vs chemotherapy

Baseline Demographics and Disease Characteristics				
b)	Atezo + etruma + chemo (n = 16)	Chemo (control) (n = 21)		
'S	5 (31.3)	15 (71.4)		
	8 (50.0)	11 (52.4)		
an American	8 (50.0) 1 (6.3) 7 (43.8) 0	10 (47.6) 0 9 (42.9) 2 (9.5)		
	7 (43.8)	11 (52.4)		
surgery	14 (87.5)	18 (85.7)		
radiotherapy	16 (100)	21 (100)		
atic sites at enrollment ^a	2.0 1-4	2.0 1-5		
ISES	14 (87.5)	15 (71.4)		
y 12, 2023. iistory forms.				

• The primary endpoint was not met: confirmed ORR was 26.7% (n = 4) in the atezolizumab + etrumadenant + chemotherapy arm vs 45.0% (n = 9) in the chemotherapy arm (Table 2) - There was 1 complete response (CR; 6.7%) and 3 partial responses (PRs; 20.0%) in the

atezolizumab + etrumadenant + chemotherapy arm; all responses in the chemotherapy arm were PRs Median PFS was 8.2 months with atezolizumab + etrumadenant + chemotherapy vs 6.8 months with chemotherapy, with a hazard ratio (HR) of 0.48 (Figure 2)

Median OS was 16.5 months with atezolizumab + etrumadenant + chemotherapy vs 12.1 months with chemotherapy, with an HR of 0.67 (Figure 3)

- Median duration of survival follow-up was 16.5 vs 11.4 months

Efficacy		
	Atezo + etruma + chemo (n = 15)	Chemo (control) (n = 20)
investigator-assessed ORRª per RECIST 1.1, Cl]	4 (26.7) [7.8, 55.1]	9 (45.0) [23.1, 68.5]
	1 (6.7) [0.2, 32.0]	0 [0.0, 16.8]
	3 (20.0) [4.3, 48.1]	9 (45.0) [23.1, 68.5]
	9 (60.0) [32.3, 83.7]	9 (45.0) [23.1, 68.5]
	1 (6.7) [0.2, 32.0]	1 (5.0) [0.1, 24.9]
	0	0
(%)	1 (6.7)	1 (5.0)
	10 (66.7) [38.4, 88.2]	16 (80.0) [56.3, 94.3]
hs	4.9 [2.9, NE]	5.4 [2.8, 8.2]
sified with 'SD' if assessment was at least 6 weeks from randomization. Pati	ients were classified as 'missing' if no post-baseline response assessm	nents were available. Patients were classified as 'unevalua

Criteria for disease control was either response and/or SD or better for at least 12 weeks

Biomarker Analysis

(B) the Chemotherapy Arm

Safety

- in either arm) are shown in Table 4
- decreased (15%) in the chemotherapy arm All treated patients had \geq 1 treatment-related adverse event (TRAE)

Table 3 Overall Safety Summary

Patients, n (%)	Atezo + etruma + chemo (n = 15)	Chemo (control) (n = 20)		
Patients with ≥1 AE	15 (100)	20 (100)		
TRAEs	15 (100)	20 (100)		
Grade 3-5 AEs	12 (80.0)	16 (80.0)		
Worst grade: 5	0	2 (10.0)ª		
Worst grade: 4	2 (13.3)	6 (30.0)		
Worst grade: 3	10 (66.7)	8 (40.0)		
Serious AEs	4 (26.7)	8 (40.0)		
Treatment-related serious AEs	3 (20.0)	5 (25.0)		
TRAEs leading to withdrawal from any treatment	3 (20.0) ^b	3 (15.0)°		
TRAEs leading to dose modification/interruption	12 (80.0)	14 (70.0)		
 Pneumonia (n = 1), septic shock (n = 1). Neurotoxicity (n = 1), peripheral sensory neuropathy (n = 1), pneumonitis (n = 1). Cardiac failure (n = 1), chest pain (n = 1), pneumonitis (n = 1). 				

Table 4. Most Common AEs (≥30% Incidence Rate in Either Arm) Atezo + etruma + chemo **Chemo (control)** (n = 15) (n = 20) 9 (60.0) 10 (50.0) 12 (60.0) 7 (46.7) 3 (20.0) 11 (55.0) 7 (46.7) 8 (40.0) 4 (26.7) 8 (40.0) 4 (20.0) 6 (40.0) 6 (40.0) 4 (20.0) 6 (40.0) 3 (15.0) 6 (40.0) 2 (10.0) 7 (35.0) 1 (6.7) 1 (6.7) 7 (35.0) 5 (33.3) 5 (25.0) 5 (33.3) 4 (20.0) 6 (30.0) 4 (26.7) 4 (26.7) 6 (30.0) 6 (30.0) 4 (26.7)

Patients, n (%)	
Anemia	
Nausea	
Fatigue	
Decreased appetite	
Diarrhea	
Alanine aminotransferase increased	
Aspartate aminotransferase increased	
Pruritus	
Asthenia	
Neutropenia	
Dyspnea	
Rash	
Neutrophil count decreased	
Constipation	
Peripheral edema	
Alopecia	
Peripheral neuropathy	

CONCLUSIONS

- addition of atezolizumab and etrumadenant to chemotherapy may confer a benefit
- CD73, a key enzyme involved in the production of extracellular adenosine¹² on limited data and sample size

REFERENCES

- 1. Augustin RC, et al. J Immunother Cancer 2022;10:e004089. 2. Leone RD, Emens LA. J Immunother Cancer 2018;6:57.
- 3. Xing J, et al. Int J Mol Sci 2023;24:14928.
- 4. Faraoni EY, et al. Cancer Res 2023;83:1111-27. 5. Zahavi D, Hodge JW. Int J Mol Sci 2023;24:8871.
- 6. Powderly J, et al. ESMO 2019. Abstract 1206P.

ACKNOWLEDGMENTS

The patients and their families The investigators and clinical study sites

This study is sponsored by F. Hoffmann-La Roche, Ltd Medical writing support for this poster was provided by Brian Law, PhD, of Nucleus Global, an Inizio company, and funded by F. Hoffmann-La Roche Ltd

DISCLOSURES

Dr Kim reports research funding for third-party writing assistance for this poster provided by Brian Law, PhD, of Nucleus Global, an Inizio company, and funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland

For all author disclosures, see the abstract

Safety data are summarized in Table 3 and the most common adverse events (AEs; ≥30% incidence

 The most frequent Grade 3/4 AEs (≥10% incidence) were neutrophil count decreased (26.7%), anemia (20.0%), white blood cell count decreased (20.0%), abdominal pain (13.3%), blood alkaline phosphatase increased (13.3%), hyponatremia (13.3%) and neurotoxicity (13.3%) in the atezolizumab + etrumadenant + chemotherapy arm, and neutropenia (30%), anemia (25%) and neutrophil count

• With a small study population, the ORR primary endpoint was not met in MORPHEUS-PDAC, although both median PFS and OS were numerically improved with the combination therapy, suggesting that the

6 (30.0)

- The OS findings are similar to those from the ARC-8 trial of quemliclustat, a small molecule inhibitor of

There were no clear associations between baseline levels of CD73 or PD-L1 and clinical outcomes, including response rates and long-term survival, although the biomarker subgroup analysis was based

• No new safety signals were observed with atezolizumab + etrumadenant + chemotherapy, and safety of the combination was consistent with the known risks of the individual treatments

- 7. Cecchini M, et al. AACR 2020. Abstract 9953
- 8. TECENTRIQ (atezolizumab). Prescribing Information. Genentech, Inc; 2023. 9. TECENTRIQ (atezolizumab). Summary of product characteristics. Genentech, Inc; 2024.
- 10. Desai J, et al. J Clin Oncol 2019;37(Suppl 4). Abstract TPS467.
- 11. Oh D-Y, et al. J Clin Oncol 2018;36(Suppl 15). Abstract TPS4134. 12. Wainberg ZA, et al. ASCO GI 2024. Abstract 665.

https://ter.li/5m9uz4

Copies of this e-poster obtained through QR, AR and/or text key codes are for personal use only and may not be reproduced without written permission of the authors. Corresponding author's email address: kkp1122@gmail.com

