AACRIO DISCOVERY AND INNOVATION IN CANCER IMMUNOLOGY: REVOLUTIONIZING TREATMENT THROUGH IMMUNOTHERAPY

February 23-26, 2025 | JW Marriott Los Angeles L.A. Live | Los Angeles, CA

AACAR American Association for Cancer Research*

New Developments in Drugging the Adenosine Pathway

Juan C. Jaen, Ph.D. President, Head of Research & Nonclinical Development Arcus Biosciences, Hayward, California

Juan C. Jaen

I have the following relevant financial relationships to disclose:

- Employee of: Arcus Biosciences
- Stockholder in: Arcus Biosciences, Hexagon Biosciences, Shasqi, Breakpoint Therapeutics

The Tumor Microenvironment Continuously Produces Immunosuppressive Adenosine in Response to Cell Death

AACER American Association for Cancer Research

Biological Impact of Quemliclustat and Etrumadenant on the Tumor Microenvironment

AACER American Association for Cancer Research

Inhibition of Adenosine Axis Enhances Multiple Steps of the Cancer Immunity Cycle

IL12p70 (vs. control)

AMERICAN AMERICAN ASSOCIATION for Cancer Research[®]

Enhanced AT3-OVA Tumor Control and Immune Infiltration Caused by Etrumadenant + Platinum-based Chemotherapy

American Association for Cancer Research®

Therapeutic Hypothesis

 Tumors with high capacity to convert ATP into adenosine will not experience the full anti-tumor immune response that would otherwise result from certain SOCs (e.g., platinum-containing chemo, radiation, etc.)

AACER American Association for Cancer Research[®]

- Evaluate adenosine agents...
 - in combination with immunogenic backbones
 - in tumor types that contain high levels of adenosine / adenosine-generation machinery
- Clinical benefit will, most likely, be apparent as long-term PFS/OS improvement (resulting from improved adaptive immunity, TME remodeling, etc.)

Therapeutic Hypothesis

- Tumors with high capacity to convert ATP into adenosine will not experience the full anti-tumor immune response that would otherwise result from certain SOCs (e.g., platinum-containing chemo, radiation, etc.)
- Evaluate adenosine agents...
 - in combination with immunogenic backbones
 - in tumor types that contain high levels of adenosine / adenosine-generation machinery
- Clinical benefit will, most likely, be apparent as long-term PFS/OS improvement (resulting from improved adaptive immunity, TME remodeling, etc.)

AMERICAN American Association for Cancer Research[®]

Unlike Oleclumab, Quemliclustat is a Potent Inhibitor of Both Soluble and Cell-Bound CD73

	Potency (IC ₅₀ , nM)			
Compound	Soluble hCD73	Cell surface CD73 (CD8 ⁺)	Cell surface CD73 (CHO)	
Quemliclustat	0.014	0.0084	0.047	
Oleclumab	0.017	0.096	0.28	

AACER American Association for Cancer Research

Oledumab (MEDI9447) was synthesized by Arcus based on the following reports: Hay et al., OncoImmunology (2016) 5, e1208875; Patent Appl. US 2016/0129108

Human PK / PD Profile of Quemliclustat

AACER American Association for Cancer Research

Final Overall Survival Analysis for Quemliclustat (CD73 Inhibitor) and Zimberelimab (α-PD-1) in Pancreatic Cancer (ARC-8 Study)

Data presented by Dr. Zev Wainberg at ASCO-GI (2024)

CD73 is Abundantly Expressed on Multiple Cell Types in <u>Pancreatic Cancer</u>

Strong Cancer Cell Staining

Strong Stromal/Fibroblast Staining

ARC-8 Study Design Included Dose Escalation, Expansion and Randomized Portions

G/nP: gemcitabine/nab-paclitaxel; Q/quemli: quemliclustat; Z/zim: zimberelimab NCT #: NCT04104672 Wainberg ZA, et al. ASCO GI, Jan 19, 2024, data cutoff:June 19, 2023

ORR in Quemli-containing Cohorts Similar to Historical Data with Chemo Only

Wainberg ZA, et al. ASCO GI, Jan. 19, 2024, data cut off of June 19, 2023

	A2: Q+G/nP (n=29)	A1: QZ+G/nP (n=61)	Pooled Q100 QZ+G/nP (n=93)	All pooled Q100 Q(±Z)+G/nP (n=122)
ORR, % (95% CI)	41 (24, 61)	34 (23, 48)	38 (28, 48)	39 (30, 48)
Confirmed ORR, % (95% CI)	38 (21, 58)	25 (15, 37)	26 (17, 36)	29 (21, 38)
Median DOR, months (95% CI)	5.5 (4.1, 11.2)	3.7 (2.6, 10.5)	4.7 (3.3, 9.3)	5.4 (3.7, 9.3)
Median PFS, mo (95% CI)	8.8 (6.4, 12.6)	4.9 (3.7, 6.0)	5.4 (4.9, 7.3)	6.3 (5.4, 7.7)
Median OS, mo (95% CI)	19.4 (12.1, 23.0)	14.6 (10.6, 21.5)	13.9 (11.1, 18.7)	15.7 (12.4, 20.9)
12-mo OS, %	72.3	60.9	59.6	62.7
18-mo OS, %	54.2	43.5	39.3	42.8
Median OS follow-up, mo (95% CI)	21.1 (19.8, 22.3)	17.6 (16.6, 20.3)	20.3 (17.1, 24.6)	21.0 (19.0, 22.8)
Subsequent systemic anticancer therapy, %	48.3	42.6	46.2	46.7

AACER American Association for Cancer Research

Based on RECIST v1.1.

DOR, duration of response; G/nP, gemcitabine/nab-paclitaxel; ORP, overall response rate; OS, overall survival; PFS, progression-free survival; Q, quemliclustat; RECIST, Response Evaluation Criteria in Solid Tumors; Z, zimberelimab.

AACER American Association for Cancer Research

Wainberg ZA, et al. ASCO GI, Jan. 19, 2024, data cut off of June 19, 2023

	A2: Q+G/nP (n=29)	A1: QZ+G/nP (n=61)	Pooled Q100 QZ+G/nP (n=93)	All pooled Q100 Q(±Z)+G/nP (n=122)
ORR, % (95% CI)	41 (24, 61)	34 (23, 48)	38 (28, 48)	39 (30, 48)
Confirmed ORR, % (95% CI)	38 (21, 58)	25 (15, 37)	26 (17, 36)	29 (21, 38)
Median DOR, months (95% CI)	5.5 (4.1, 11.2)	3.7 (2.6, 10.5)	4.7 (3.3, 9.3)	5.4 (3.7, 9.3)
Median PFS, mo (95% CI)	8.8 (6.4, 12.6)	4.9 (3.7, 6.0)	5.4 (4.9, 7.3)	6.3 (5.4, 7.7)
Median OS, mo (95% CI)	19.4 (12.1, 23.0)	14.6 (10.6, 21.5)	13.9 (11.1, 18.7)	15.7 (12.4, 20.9)
12-mo OS, %	72.3	60.9	59.6	62.7
18-mo OS, %	54.2	43.5	39.3	42.8
Median OS follow-up, mo (95% CI)	21.1 (19.8, 22.3)	17.6 (16.6, 20.3)	20.3 (17.1, 24.6)	21.0 (19.0, 22.8)
Subsequent systemic anticancer therapy, %	48.3	42.6	46.2	46.7

Based on RECIST v1.1.

DOR, duration of response; G/nP, gemcitabine/nab-paclitaxel; ORP, overall response rate; OS, overall survival; PFS, progression-free survival; Q, quemliclustat; RECIST, Response Evaluation Criteria in Solid Tumors; Z, zimberelimab.

Liver Mets at Baseline	A2: Q + G/nP (n=17)	A1: QZ + G/nP (n=42)	Pooled Q100 QZ + G/nP (n=62)	All Pooled Q100 Q(±Z) + G/nP (n=79)	NAPOLI-3 (n=309)
Events (%)	11 (64.7)	26 (61.9)	40 (64.5)	51 (64.6)	242 (78.3)
Median OS, months	12.1	12.2	11.1	12.1	8.6
95% CI	10.0, 20.9	6.2, 17.9	8.1, 14.5	10.0, 15.7	

No Liver Mets at Baseline	A2: Q + G/nP (n=12)	A1: QZ + G/nP (n=19)	Pooled Q100 QZ + G/nP (n=31)	All Pooled Q100 Q(±Z) + G/nP (n=43)	NAPOLI-3 (n=78)
Events (%)	4 (33.3)	7 (36.8)	16 (51.6)	20 (46.5)	43 (55.1)
Median OS, months	22.0	21.2	21.2	21.5	13.8
95% CI	17.9, NE	14.6, NE	13.9, 25.4	17.9, 25.4	

BL: Baselne; Cl: confidence interval; G/nP: gemcitabine/hab-pacitaxel; mets: metstasis; mGS: median overal survival; mcs: months; NE: not estimable; OS: overal survival; Q; quemiclustat NAPOLI-3: Wainberg, et al. The Lancet. Sept 2023. <u>https://doi.org/10.1016/S/0140-6736/2301366-1</u>. Data shown ior the G/nP arm only WainbergZA, et al. ASCD GJ, Jan. 19, 2024, data cutoff of June 19, 2023

Quemli-based Regimen <u>Reduced Risk of Death by 37%</u> and increased mOS by 5.9 months Compared to SCA

Wainberg Z A, et al. ASCO GI, Jan. 19, 2024, data cut off of June 19, 2023

1

NR4A Gene Expression is a Proxy for $A_{2a}R / A_{2b}R$ Adenosine Receptor Signaling

- A_{2a}R & A_{2b}R receptors coupled to adenylate cyclase & drive increases in cAMP upon activation
- cAMP \rightarrow PKA \rightarrow pCREB \rightarrow NR4A1-3 upregulation

NR4A(1-3) Expression is Associated with Poor OS (and PFS) in 1L AAGER American Association mPDAC Patients Treated with Gem/nab-Pac (GA) – PRINCE Trial

PRINCE Study (ALL PATIENTS)

PRINCE Study (GA + Nivo Cohort)

Transcriptional analysis performed by Arcus on published bulk mRNA data from the PRINCE Trial (NCT03214250); Padron et al., NATURE MEDICINE (2022)

In ARC-8 Trial, NR4A Gene Expression is Downregulated by a Quemli-containing Regimen

AACER American Association for Cancer Research

Kim et al., AACR Spec. Conf. Cancer Research (Pancreatic Cancer); Sept 15-18, 2024

In the ARC-8 Trial, Treatment with a Quemli-containing Regimen Led to Increases in Tumor Inflammation

AACER American Association for Cancer Research

Kim et al., AACR Spec. Conf. Cancer Research (Pancreatic Cancer); Sept 15-18, 2024

Patients with the High Baseline NR4A Expression Had Greater Benefit from a Quemli-containing Regimen

AACR American Association for Cancer Research

Kim et al., AACR Spec. Conf. Cancer Research (Pancreatic Cancer); Sept 15-18, 2024

AACR IO: DISCOVERY AND INNOVATION IN CANCER IMMUNOLOGY-REVOLUTIONIZING TREATMENT THROUGH IMMUNOTHERAPY

2

Patients with the Highest Decreases in Tumor NR4A Expression Experienced an OS Benefit in ARC-8 Trial

AACER American Association for Cancer Research[®]

Kim et al., AACR Spec. Conf. Cancer Research (Pancreatic Cancer); Sept 15-18, 2024

MORPHEUS-PDAC Study Design: Etruma (A2a/A2b) + Atezo + GnP vs GnP Standard of Care Control

AACER American Association for Cancer Research[®]

GnP = gemcitabine plus nab-paclitaxel

MORPHEUS-PDAC: Etruma $(A_{2a}R/A_{2b}R)$ + Atezo + GnP Showed Trends in Improved PFS and OS vs GnP Control

AACER American Association for Cancer Research

Adapted from Kim et al., AACR; April 5-10, 2024

PRISM-1: Ongoing Ph3 Randomized, Placebo Controlled, Double-Blind Study of Quemliclustat in 1L Metastatic PDAC

NCT06608927

GnP = gemcitabine plus nab-paclitaxel

ARC-9 Cohort B: Etruma + Zim + mFOLFOX6 + Bevacizumab (EZFB) vs Regorafenib in 3L mCRC

KEY INCLUSION CRITERIA

- Histologically confirmed unresectable mCRC
- Measurable disease per RECIST v1.1
- ECOG PS of 0 or 1
- Disease progression on or after treatment with oxaliplatin and irinotecan containing chemotherapy in combination with anti-VEGF(R) or anti-EGFR

Presented by Wainberg et al. ASCO 2024, Jun. 2, 2022; data cut-off of November 13, 2023

KEY EXCLUSION CRITERIA

- · Prior treatment with immune checkpoint blockade therapies
- Mutation in the BRAF oncogene; patients with unknown BRAF status will be required to undergo testing at a local laboratory and provide results at screening

Two-Thirds (66%) of Patients on EZFB Experienced Tumor Reduction

AMER American Association for Cancer Research[®]

Presented by Wainberg et al. ASCO 2024, Jun. 2, 2022; data cut-off of November 13, 2023

EZFB Demonstrated Statistically Significant Improvement in PFS vs Rego

EZFB Demonstrated Significant Improvement in OS vs Rego

AACR American Association for Cancer Research

5.7 Month Median PFS and 20 Month Median OS for EZFB in Patients With Liver Metastasis

AMERICAN AMERICAN ASSOCIATION for Cancer Research[®]

Three Recent Clinical Datasets Demonstrate the Potential Benefits of Combining Adenosine Inhibition with Chemo

AACER American Association for Cancer Research

- Critical considerations:
 - Clinical setting (CD73 expression) baseline or induced (e.g., radiation)
 - Immunogenic therapeutic backbone (e.g., platinum, taxane) to release ATP
 - Optimal molecules (e.g., complete CD73 inh, A_{2a}R and A_{2b}R dual blockade, etc.) / doses
- Emerging biomarker data supportive of the proposed MoA:
 - Treatment with quemli- or etruma-containing regimens drives reduction in "adenosine" signaling and increased tumor inflammation
 - High tumor baseline levels of "adenosine" (as inferred by CD73 or NR4A expression) are negative predictors of response to SOC. These are in fact the ones with better clinical outcomes.
- Next steps: advancement of these agents into pivotal studies (e.g., quemli in PRISM-1 (1L PDAC); etruma in advanced mCRC)