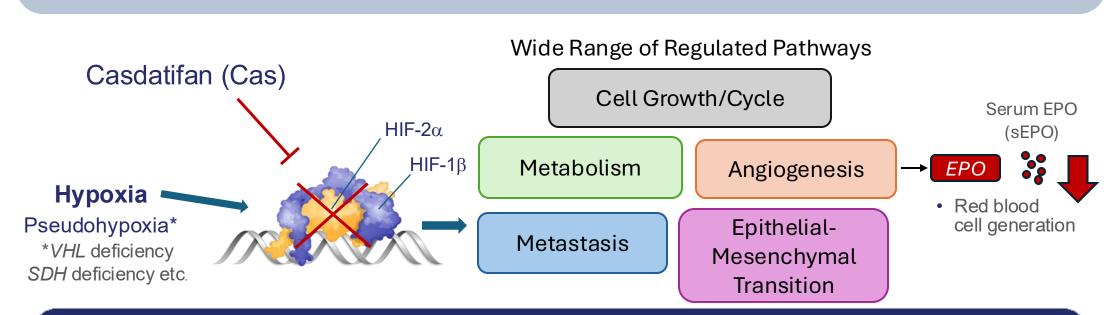
AACR-NCI-EORTC 2025

Erythropoietin (EPO) is a Pharmacodynamic Biomarker for Systemic HIF-2α Inhibition that Correlates with the Clinical Activity of Casdatifan

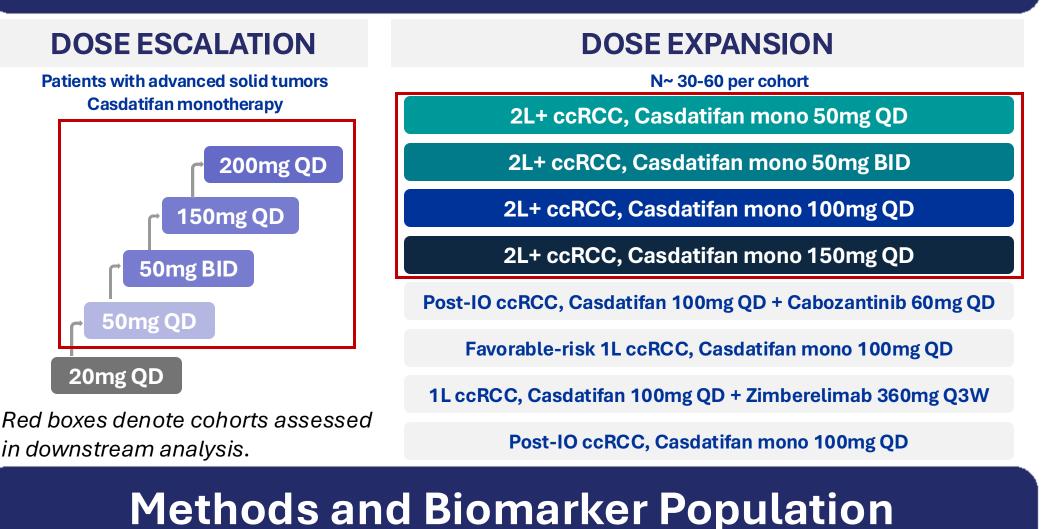
Abstract #:

Oct 22nd-26th

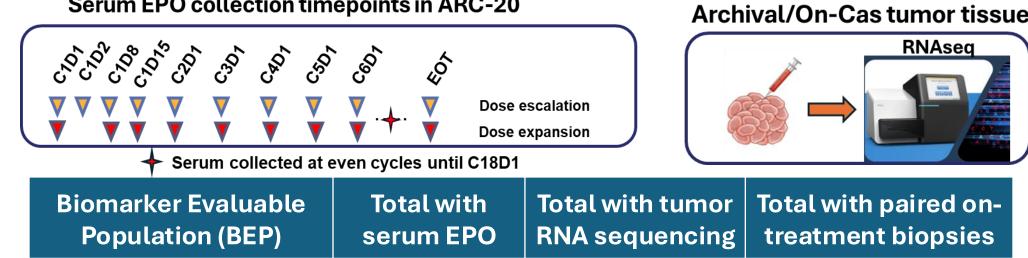
Yinghui Guan,¹ Ben Weeder,¹ Jaskirat Singh¹, Amita Patnaik,² Moshe Ornstein,³ Benjamin Garmezy,⁴ Alexandra Drakaki,⁵ Brian Rini,⁶ Jamie Merchan,⁷ Sun Young Rha,⁸ Ralph Hauke,⁹ Rohit Kumar,¹⁰ Pedro Barata,¹¹ Craig Gedye,¹² Eric Miller,¹³ Jae Lyun Lee,¹⁴ Yusra Shao,¹⁵ Se Hoon Park,¹⁶ Marc Matrana,¹⁷ Clara Hwang,¹⁸ Hunter Cole,¹ Chris Negro,¹ Mohammad Ghasemi ¹, Jianfen Chen,¹ Paul Foster,¹ Toni Choueiri,¹⁹ Angelo Kaplan,¹ Soonweng Cho,¹ Omar Kabbarah¹


¹Arcus Biosciences, Inc., Hayward, CA, USA; ²The START Center for Cancer Research, San Antonio, TX, USA; ³Cleveland Clinic, Cleveland, OH, USA; ⁵Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; ⁶Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ⁷Department of Medicine Oncology, University of Miami Leonard M. Miller School of Medicine, University College of Medicine, Seoul, South Korea; ⁹Nebraska Cancer Specialists, Omaha, NE, USA; ¹⁰James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; ¹¹University Hospitals Seidman Cancer Center, Cleveland, OH, USA; ¹²ICON Cancer Centre Adelaide, Kurralta Park, SA, Australia; ¹³Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; ¹⁴Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ¹⁵Karmanos Cancer Center, Detroit, MI, USA; ¹⁶Samsung Medical Center, Seoul, South Korea; ¹⁷Oschsner Health, New Orleans, LA, USA; ¹⁸Henry Ford Cancer Institute, Boston, MA, USA

Objective

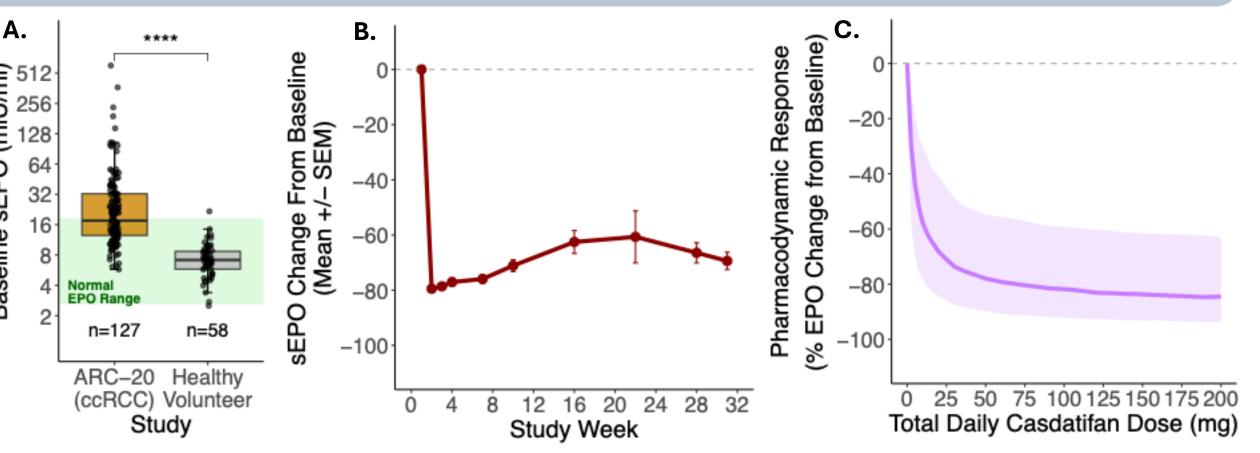

To evaluate EPO levels both in circulation and in tumor samples as a potential pharmacodynamic and predictive biomarker for systemic HIF-2α inhibition on Casdatifan in clear cell RCC (ccRCC) Patients.

Background


- Dysregulation of hypoxia-inducible factor 2-alpha (HIF-2α) in patients with ccRCC contributes to increased angiogenesis, proliferation, and cancer cell survival.¹
- Casdatifan (Cas) is an orally bioavailable small-molecule HIF-2α inhibitor that has shown promising efficacy in metastatic ccRCC in the ARC-20 clinical trial (NCT05536141).²
- Erythropoietin (EPO) is a known HIF-2α transcription target, and serum EPO (sEPO) levels decrease after treatment with HIF-2α inhibitors.³

ARC-20 Clinical Design

Serum EPO collection timepoints in ARC-20 Archival/On-Cas tumo



127

ccRCC treated with

50mg-200mg Casdatifan

Figure 1. Cas Treatment Results in Deep and Sustained Suppression of sEPO

EPO data collected as of March 14th, 2025. Baseline data for healthy volunteers collected as part of ARC-14 Study. Normal serum EPO range 2.59-18.5 mlU/ml. Statistical comparisons performed using Wilcoxon ranked-sum test. Longitudinal EPO data shown for pooled Cohorts. sEPO changes from baseline exclude values measured within 28 days of an erythropoietin stimulating agent (ESA) or during Casdatifan dose-hold. Pharmacodynamic (PD) responses per dose were calculated at day 15. Shaded band represents the 95% confidence interval of simulated concentrations.

Pharmacodynamic (PD) analysis of EPO

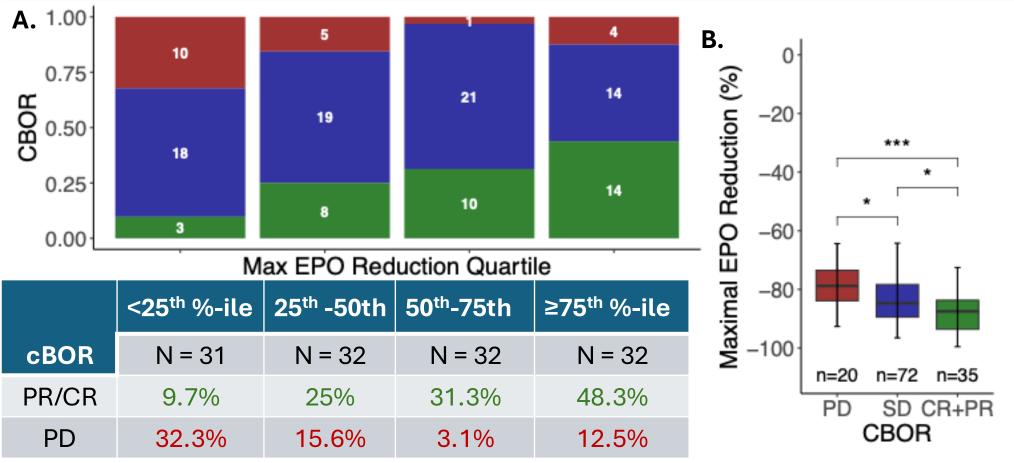
- 49% of ccRCC patients in ARC-20 have elevated sEPO levels at baseline (Figure 1A)
- Patients experienced a median maximum reduction in sEPO of -84.8% (mean= -82.9%; SD=12.4%) compared to baseline sEPO levels (Fig 1B)
- Deep suppression of EPO seen with 50mg-200mg daily Cas at day 15 (Figure 1C)

Deeper sEPO Reduction (n=64)

Figure 2. Higher ORR is Observed in Patients With Deeper Than Median sEPO Suppression

Less Deep sEPO Reduction (n=63)

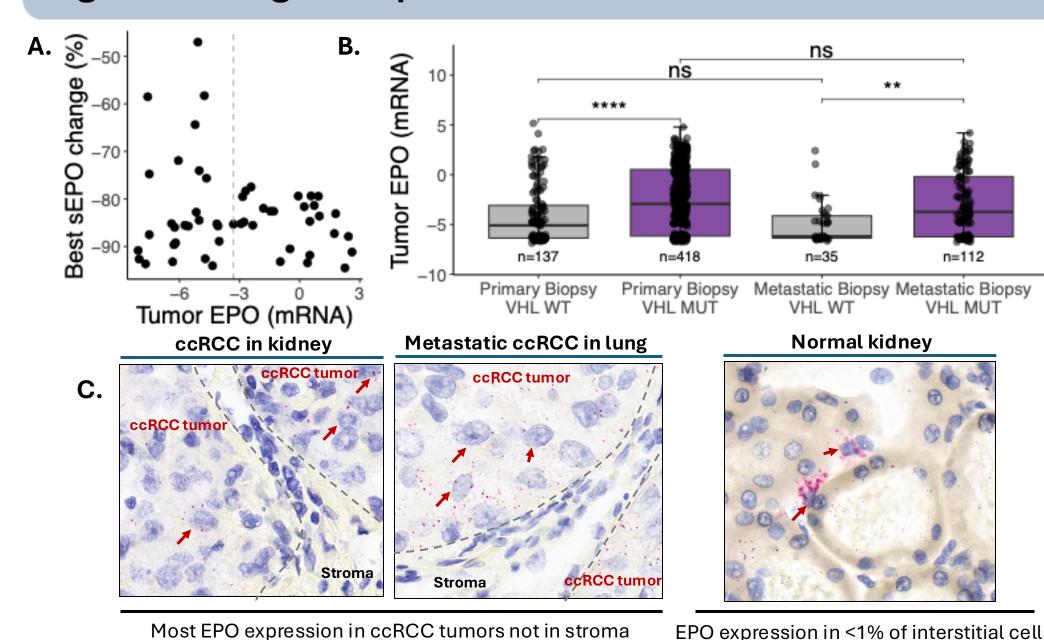
	cBOR	% (95% CI)	n	% (95% CI)	n
	CR/PR	37.5% (25.7, 50.5)	24	17.5% (9.1, 29.1)	11
	PD	7.5% (2.6, 17.3)	5	23.8% (14.0,36.2)	15
om Baselin€ SFM)	0 -20	Deeper		Less Dee	
SELO Change From Baseline (Mean +/- SEM)	-40 -60 -80 -100	8 12 16 20 2	24 28 32 0	4 8 12 16	20 24 28 32


EPO data and efficacy data collected as of March 14th, 2025. 95% CI calculated with Clopper Pearson test; CR: complete response; PR: partial response; PD: progressive disease

Assessment of Response Rates by EPO Stratified Suppression Levels

- Response rate is higher and PD rate is lower in patients with deeper than median EPO suppression (Figure 2)
- Even patients with sEPO reduction less than median experience sustained sEPO suppression on treatment (Figure 2)

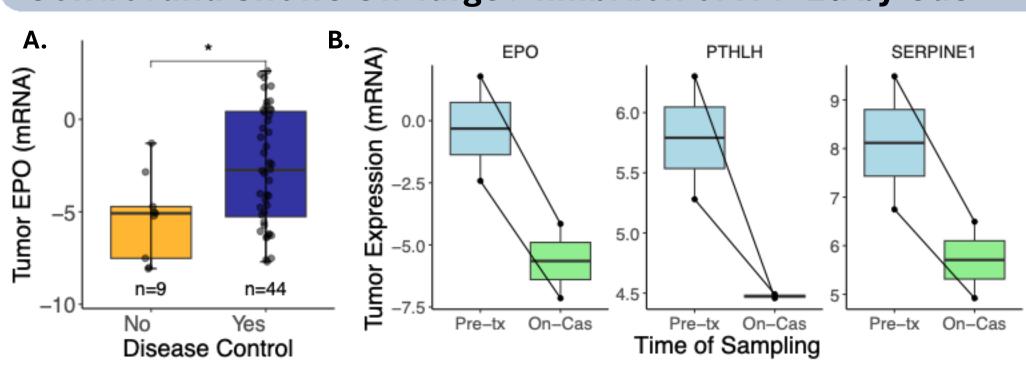
Figure 3. Better Overall Responses on Cas Coincide with Deeper Levels of Maximal sEPO Suppression


Results

EPO data and efficacy data collected as of March 14th, 2025. cBOR: Confirmed best overall response; CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease. Statistical comparisons performed using Wilcoxon R-S test. **Assessment of sEPO Suppression and Best Overall Responses**

- Response rate rises steadily across best EPO change quartiles (Figure 3A)
- There is a significant and continuous trend showing better responses with stronger levels of EPO reduction (Figure 3B)

Figure 4. Malignant Epithelial Cells Are a Source of EPO


Most EPO expression in ccRCC tumors not in stroma EPO expression in <1% of interstitial cells

Dashed line represents median tumor EPO expression. IMmotion151 data for VHL WT and mutant biopsies obtained from EGA through data agreement with Genentech (EGAS00001004353). Statistical comparisons performed using Wilcoxon ranked-sum.

Cancer Cells are a Direct Source of EPO

- ARC-20 Patients with high tumor EPO mRNA experience strong suppression of sEPO (Fig 4A).
- VHL mutant ccRCC tumors express higher levels of tumor EPO mRNA than wildtype tumors regardless of biopsy site in data from IMmotion151⁴ (Fig 4B).
- Cancer cells, not adjacent stroma, of primary and metastatic ccRCC express EPO.
 EPO observed only in interstitial kidney fibroblasts of normal kidney (Fig 4C, ISH).

Figure 5. Tumor EPO mRNA is Associated With Disease Control and Shows On-Target Inhibition of HIF-2a by Cas

Disease control defined by BOR of stable disease or better. Statistical comparisons performed using Wilcoxon ranked-sutest. Paired biopsies are from patients receiving 100mg QD Cas monotherapy. Pre-tx biopsies were taken from archival tissue, while treatment biopsies were taken 14-20 days after treatment initiation.

ARC-20 Tumor mRNA analysis

- Higher tumor EPO mRNA expression at baseline is associated with disease control (Figure 5A)
- In on-treatment tumor biopsies, mRNA expression of EPO and two other canonical HIF-2α targets, PTHLH (PTHrP) and SERPINE1 (PAI-1), are reduced dramatically compared to baseline measures (Figure 5B)

Conclusions

- Cas treatment results in deep and sustained suppression of sEPO
- Deeper maximal reduction in sEPO is associated with better clinical benefit on Cas monotherapy
- Cancer cells express EPO in ccRCC, which may be linked to sEPO levels and depth of change on treatment.
- Higher tumor EPO mRNA expression is also associated with disease control and EPO decreases dramatically on-treatment in a way that parallels peripheral changes.

References, Acknowledgments & Disclosures

References: 1. Mouayad, ZB, The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis, Cells 2025. 2. Ghasemi, M. et al. Pharmacokinetics, pharmacodynamics and safety of casdatifan, a novel hypoxia-inducible factor-2α inhibitor, in healthy participants. British Journal of Clinical Pharmacology. 3. Chen W. Targeting Renal Cell Carcinoma with a HIF-2 antagonist, Nature 2016 4. Motzer, R. J. et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer Cell 38, 803-817.e4 (2020).

Acknowledgements: We would like to thank Haiying Zhou and Ji Yun Kim for valuable input on study design and result interpretation; Madhura Joglekar for help developing RNAscope assay; Nicole Couture, Yasmin Esparza and Madhu Menaka for coordinating sample collection/shipment and assay implementation.